# **Assessment Report**

On the

Netalzul Mt Projects
of the Hazelton Property

Omenica Mining Division NTS 93M -127° 12' 3" Longitude, 55° 12' 1" Latitude

**75 Mineral Claims** 

Operator:

Jaxon Mining Inc.

Prepared by:

Lily Liu, P.Geo

Tony Guo, P. Geo.

June 30, 2022

# **Table of Contents**

| 1  | 5        | Sum   | ımary                                      | 1              |
|----|----------|-------|--------------------------------------------|----------------|
| 2  | I        | ntro  | duction and terms of reference             | 1              |
| 3  | F        | Prop  | perty description and location             | 2              |
| 4  | (        | Geol  | logical setting                            | 5              |
|    | 4.1      |       | Regional Geology                           | 6              |
|    | 4.2      | 2     | Property Geology                           | 8              |
|    | 4        | 1.2.1 | 1 Sedimentary Sequence                     | 8              |
|    | 4        | 1.2.2 | 2 Intrusive Units                          | 9              |
|    | 4        | 1.2.3 | Alteration and Mineralization1             | 10             |
|    | 4        | 1.2.4 | 4 Structure1                               | 11             |
| 5  | ŀ        | Histo | ory1                                       | 11             |
| 6  |          | Оеро  | osit type1                                 | 13             |
| 7  | E        | Expl  | oration1                                   | 13             |
|    | 7.1      |       | Rock sampling1                             | 15             |
|    | 7.2      |       | Soil sampling                              | 21             |
|    | 7.3      | 3     | Diamond Drilling Program2                  | 24             |
|    | 7.4      | _     | Structural assessment                      | 30             |
|    | 7.5      | •     | IP3                                        | 35             |
|    | 7.6      | ;     | Petrographic study3                        | 37             |
|    | 7.7      | •     | 3D footprint modelling                     | }9             |
|    | 7.8      | 3     | Water sampling4                            | 11             |
|    | 7.9      | )     | Lidar survey4                              | <del>1</del> 2 |
| 8  | 5        | Sam   | pling preparation, analysis, and security4 | 13             |
| 9  | (        | Cond  | clusions4                                  | 14             |
| 10 | )        | Re    | eferences4                                 | <del>1</del> 5 |
| 11 |          | Ce    | ertificate4                                | <b>17</b>      |
| 12 | <u> </u> | Ap    | ppendices4                                 | 19             |
|    |          |       |                                            |                |
|    |          |       | LIST OF FIGURES                            |                |
| Fi | gur      | e 2.  | 1 Hazelton Property                        | 2              |
| Fi | gur      | e 3.  | 1 Location map of the Hazelton Property    | 3              |

| Figure 4.1 Regional Geology Map                                                                 | 7     |
|-------------------------------------------------------------------------------------------------|-------|
| Figure 4.2 Geological map of Netalzul Mt Project                                                | 8     |
| Figure 4.3 Potassic, chlorite and sericite alteration associated with quartz veins              | 10    |
| Figure 4.4 Potassic and chloritic alteration associated with quartz veins                       | 10    |
| Figure 7.1 Geological map of Netalzul Mt project with rock, soil samples, and drill holes in 20 | )21   |
|                                                                                                 | 14    |
| Figure 7.2 Rock samples with ID in 2021                                                         | 17    |
| Figure 7.3 Rock samples with copper value                                                       | 18    |
| Figure 7.4 Rock samples with silver value                                                       | 19    |
| Figure 7.5 Adit 3 (left); one meter chip sample (#72013) from Adit 4 area with Ag grade @ 29    | 915   |
| g/t (right)                                                                                     | 20    |
| Figure 7.6 One meter chip sample (A0027300) at Daisy North Contact Zone area with Au            |       |
| grades of up to 7 g/t                                                                           | 20    |
| Figure 7.7 Monzonite dyke grab sample (72521) with Cu grades of up to 1.47% from the            |       |
| southwest area of Netalzul Mt.                                                                  | 20    |
| Figure 7.8 Soil samples with ID in 2021                                                         | 22    |
| Figure 7.9 Soil samples with copper value in 2021                                               | 23    |
| Figure 7.10 Soil samples with zinc value in 2021                                                | 23    |
| Figure 7.11 Locations and traces of 9 drill holes                                               | 24    |
| Figure 7.12 High-grade polymetallic mineral cemented quartz breccia core in hole 6              | 26    |
| Figure 7.13. Core from 40 m to 46 m in NET21-05                                                 | 27    |
| Figure 7.14. Core from 93.5 m to 100 m at NET21-06                                              | 27    |
| Figure 7.15 Core from 157 m to 163 m in hole NET21-09                                           | 27    |
| Figure 7.16. Core at 198 m in hole NET21-08 showing multiple altered K-feldspar and             |       |
| chalcopyrite-pyrite veins                                                                       | 28    |
| Figure 7.17 Cross section of NET21-01, NET21-02, NET21-03, NET21-08 with copper grade           | ∍. 28 |
| Figure 7.18 Cross section of NET21-04 and NET21-05 with copper grade                            | 29    |
| Figure 7.19 Cross section of NET21-06, NET21-07 with copper grade                               | 29    |
| Figure 7.20 Cross section of NET21-09 with copper grade                                         | 30    |
| Figure 7.21 Photographs of D1 deformation features within the Bowser Lake Group on the          |       |
| northern side of Netalzul Mountain                                                              | 31    |
| Figure 7.22 Observations of the contact relationships between Netalzul Mountain granitoids      | and   |
| Bowser Lake Group hornfels                                                                      | 32    |
| Figure 7.23 Observations of mineralized vein orientations                                       | 33    |

| Figure 7.24 NW-SE spaced cleavage in granitoids.                                        | 34        |
|-----------------------------------------------------------------------------------------|-----------|
| Figure 7.25 Illustrations of Late Dextral Faulting at Netalzul Mountain                 | 35        |
| Figure 7.26 Annular IP chargeability anomaly at Netalzul Mt                             | 36        |
| Figure 7.27 Magnetotelluric and IP survey showing a deep strong and large conductive    | anomaly   |
| (the porphyry system target) ~1,000 m at depth, at central north area surrounded by a   | nnular IP |
| chargeability nearer to surface                                                         | 37        |
| Figure 7.28 Thin section photos of dolerite sample NET21-02@49.3m                       | 38        |
| Figure 7.29 Thin section photos of granodiorite sample NET21-02@196.9m                  | 38        |
| Figure 7.30 Thin section photos of monzonite sample NET21-04@292m                       | 39        |
| Figure 7.31 Four rock targets using the Halley model.                                   | 40        |
| Figure 7.32 Two soil targets using the Halley model geometry                            | 40        |
| Figure 7.33 Rock targets (Orange) overlap with Soil target (Green). The results indicat | e a       |
| similar X-Y location for the highest scoring part of the target                         | 41        |
| Figure 7.34 Water sample, creeks, and drillholes location                               | 42        |
| Figure 7.35 Lidar map at Netalzul Mt                                                    | 43        |
| LIST OF TABLES                                                                          |           |
| Table 3.1 Property Claims Information                                                   | 3         |
| Table 5.1 Netalzul Mt exploration history                                               |           |
| Table 7.1 Significant Assay Results from Rock Samples at Netalzul Mt in 2021            |           |
| Table 7.2 Significant assay results from soil samples at Netalzul Mt in 2021            |           |
| Table 7.3 Detail information of 9 drill holes                                           |           |
| Table 7.4 Assay results from nine holes - 2021 drilling program at Netalzul Mt          | 25        |
| Table 7.5 Thin section and petrographic study summary                                   |           |
| Table 7.6 Table showing the targets highlighted by the footprint modeling processing a  |           |
| the Netalzul rock and soil data                                                         | • •       |
| Table 7.7 Detailed info about the water samples                                         | 42        |

### 1 Summary

The Hazelton Property is located in northwestern British Columbia, in the Omineca Mining Division, approximately 40 km north of Smithers, B.C. It currently represents an early-stage exploration property.

The Hazelton Property ranges in elevation between 670 and 2,100 meters above sea level and in parts it is topographically rugged, but most areas are accessible by foot. Annual precipitation is approximately 56 centimeters or more. In winter the temperatures fall to -10° Celsius and there is often more than 1 meter of snow. Summers are mostly cool and wet only reaching an average temperature of approximately 15°Celsius.

The Hazelton Property lies in the center part of Skeena Arch within the Omineca Mining Division and Intermontane Tectonic Belt, and its rocks are believed to form part of the Bowser Lake or Stikine terrains. The Skeena Arch is an ancient northeast trending tectonic element that has been the axis of volcanism, sedimentation, and mineralization since the Jurassic. The district is largely underlain by volcanic and sedimentary rocks of the Jurassic-age Hazelton and Bowser Lake groups, as well as younger sequences belonging to the Cretaceous Skeena and Kasalka groups. Small intrusive stocks and plugs throughout the district intrude rocks of the Bowser Lake, Hazelton, and Skeena groups. Compositionally the intrusive rocks include diorite, granodiorite, tonalite and monzonite.

The Hazelton Property is mostly underlain by a folded package of Jura-Cretaceous sedimentary and volcanic rocks, which include turbiditic siltstones, mudstones, argillites, quartzites, debrisflow grits and conglomerates, while the bimodal volcanics are represented by flows of andesite and rhyodacite, as well as some rhyolite domes. This package is intruded by several Late Cretaceous stocks that belong to the Bulkley Plutonic Suite. The porphyry and polymetallic type mineralization are associated with the Bulkley Plutonic Suite.

The Hazelton Property (the Property) now comprises 75 contiguous mineral claims, with a total area of 72,303.41 hectares on NTS 93M centered at -127° 10' 46" Longitude, 55° 11' 5" Latitude. Jaxon Mining divided the Hazelton Property into 7 projects: Red Springs, Blunt Mt, Max, Netalzul Mt, Mt Thoen, Rocher Deboule Mt, and Kispiox Mt. The Netalzul Mt project is located on the northwest corner of the Hazelton Property.

Jaxon's team has conducted exploration works on Netalzul Mt projects during June ~ Oct 2021, spending a total amount of \$2,219,892.15 CAD. The exploration activities mainly consist of rock sampling, soil sampling, drilling, IP/MT survey and Lidar survey.

#### 2 Introduction and terms of reference

This report has been written to fulfill the requirements for filing assessment work under the British Columbia Mineral Tenure Act. It describes the exploration undertaken on the Netalzul Mt projects for the Hazelton Property. This report is not compliant with National Instrument 43-101 and Form 43-101 F1 and should not be used as a "Technical Report" under National Instrument

43-101. Hazelton property includes seven projects, Red Springs, Blunt Mt, Max, Netalzul Mt, Mt Thoen, Rocher Deboule Mt, and Kispiox Mt (Figure 2.1).

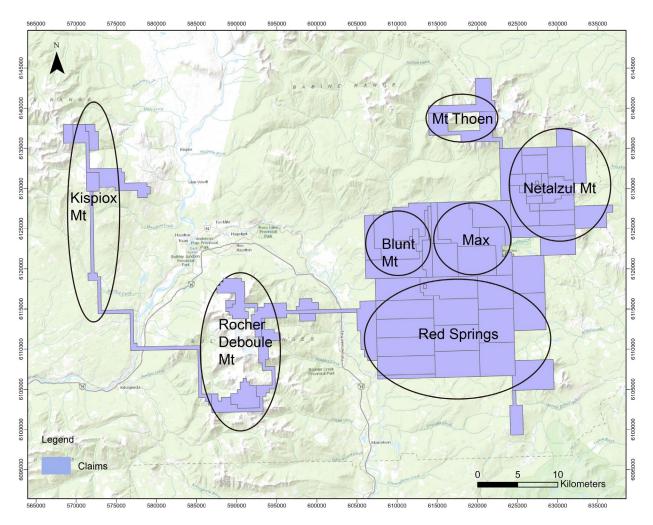



Figure 2.1 Hazelton Property

### 3 Property description and location

The Hazelton Property is situated in the Omineca Mining Division, in the Harold Price Creek valley of British Columbia. The property is situated approximately 40 kilometres north of Smithers (Figure 3.1).

The Kispiox Project is located on the northwest corner of the property, and the Blunt Mt Project is located on the northwestern-central part of the property (Figure 2.1). Access to the Kispiox and Blunt Mt projects is via Helicopter from Smithers BC.

The Hazelton Property (the Property) now comprises 75 contiguous mineral claims, with a total area of 72,303.41 hectares on NTS 93M centered at -127° 10' 46" Longitude, 55° 11' 5" Latitude (Table 3.1).



Figure 3.1 Location map of the Hazelton Property

Table 3.1 Property Claims Information

| Title Number | Claim Name    | Map Number | Issue Date  | Good To Date | Status | Area (ha) |
|--------------|---------------|------------|-------------|--------------|--------|-----------|
| 906889       | PRICE CREEK   | 093M       | 2011/OCT/07 | 2025/JAN/30  | GOOD   | 2396.1518 |
| 1043656      | MART 1        | 093M       | 2016/APR/21 | 2028/JAN/31  | GOOD   | 18.4113   |
| 1043657      | MART 2        | 093M       | 2016/APR/21 | 2028/JAN/31  | GOOD   | 18.4151   |
| 1043658      | MART 3        | 093M       | 2016/APR/21 | 2028/JAN/31  | GOOD   | 73.6566   |
| 1046361      | MART 4        | 093M       | 2016/AUG/31 | 2028/JAN/31  | GOOD   | 110.5419  |
| 1047235      | MART 5        | 093M       | 2016/OCT/14 | 2025/JAN/30  | GOOD   | 479.2275  |
| 1047300      | MART 6        | 093M       | 2016/OCT/17 | 2025/JAN/30  | GOOD   | 165.8748  |
| 1047978      | SKILOKIS      | 093M       | 2016/NOV/21 | 2025/JAN/30  | GOOD   | 36.8768   |
| 1047979      | UNDER THE GUN | 093M       | 2016/NOV/21 | 2025/JAN/30  | GOOD   | 73.7456   |
| 1047981      |               | 093M       | 2016/NOV/21 | 2025/JAN/30  | GOOD   | 18.437    |
| 1048010      | MART 7        | 093M       | 2016/NOV/23 | 2025/JAN/30  | GOOD   | 276.533   |
| 1050389      | PC1           | 093M       | 2017/FEB/27 | 2025/JAN/30  | GOOD   | 1639.9889 |
| 1050390      | PC2           | 093M       | 2017/FEB/27 | 2025/JAN/30  | GOOD   | 1806.5247 |
| 1050391      | PC3           | 093M       | 2017/FEB/27 | 2025/JAN/30  | GOOD   | 774.2492  |

| 1050392 | PC4                | 093M | 2017/FEB/27 | 2025/JAN/30 | GOOD | 1771.2805 |
|---------|--------------------|------|-------------|-------------|------|-----------|
| 1050393 | PC4                | 093M | 2017/FEB/27 | 2025/JAN/30 | GOOD | 1346.4647 |
| 1050576 | SUN                | 093M | 2017/MAR/06 | 2028/JAN/31 | GOOD | 1271.3185 |
| 1051166 | KSB1               | 093M | 2017/APR/03 | 2026/JAN/30 | GOOD | 1828.2384 |
| 1051167 | KSB2               | 093M | 2017/APR/03 | 2026/JAN/30 | GOOD | 1830.0364 |
| 1051168 | KSB3               | 093M | 2017/APR/03 | 2026/JAN/30 | GOOD | 1831.734  |
| 1051169 | KSB4               | 093M | 2017/APR/03 | 2025/JAN/10 | GOOD | 1813.3924 |
| 1051170 | KSB5               | 093M | 2017/APR/03 | 2026/JAN/30 | GOOD | 1812.0934 |
| 1051171 | KSB6               | 093M | 2017/APR/03 | 2026/JAN/30 | GOOD | 1847.6603 |
| 1051172 | KSB6               | 093M | 2017/APR/03 | 2026/JAN/30 | GOOD | 1846.315  |
| 1051174 | KSB7               | 093M | 2017/APR/03 | 2026/JAN/30 | GOOD | 1663.5612 |
| 1051175 | KSB7               | 093M | 2017/APR/03 | 2026/JAN/30 | GOOD | 1662.667  |
| 1051176 | KSB8               | 093M | 2017/APR/03 | 2026/JAN/30 | GOOD | 1643.184  |
| 1052414 | KBS10              | 093M | 2017/JUN/07 | 2025/JAN/30 | GOOD | 1734.41   |
| 1052502 | HZ1                | 093M | 2017/JUN/12 | 2025/JAN/30 | GOOD | 1769.1024 |
| 1054058 | MART 6             | 093M | 2017/AUG/15 | 2028/JAN/31 | GOOD | 1288.2839 |
| 1054415 | LEWIS1             | 093M | 2017/AUG/31 | 2026/JAN/30 | GOOD | 1664.4238 |
| 1054416 | LEWIS2             | 093M | 2017/AUG/31 | 2026/JAN/30 | GOOD | 1665.2858 |
| 1054419 | LEWIS3             | 093M | 2017/AUG/31 | 2026/JAN/30 | GOOD | 333.1608  |
| 1054429 | LH1                | 093M | 2017/AUG/31 | 2026/JAN/30 | GOOD | 1851.1522 |
| 1056555 | SK 4               | 093M | 2017/NOV/21 | 2025/JAN/30 | GOOD | 18.4342   |
| 1059297 | BIT COIN           | 093M | 2018/MAR/14 | 2026/JAN/30 | GOOD | 18.4622   |
| 1064626 | JUST CUZ           | 093M | 2018/NOV/22 | 2025/JAN/30 | GOOD | 147.4942  |
| 1072506 |                    | 093M | 2019/NOV/05 | 2026/JAN/30 | GOOD | 1515.6028 |
| 1073616 | SNOW 1             | 093M | 2020/JAN/03 | 2028/JAN/31 | GOOD | 257.7287  |
| 1073617 | SNOW2              | 093M | 2020/JAN/03 | 2028/JAN/31 | GOOD | 257.8109  |
| 1073692 | EAST 2020          | 093M | 2020/JAN/05 | 2028/JAN/31 | GOOD | 184.1986  |
| 1073724 | HELLEN EAST        | 093M | 2020/JAN/06 | 2028/JAN/31 | GOOD | 552.518   |
| 1073727 | SNOW3              | 093M | 2020/JAN/06 | 2028/JAN/31 | GOOD | 276.1404  |
| 1073728 | SNOW4              | 093M | 2020/JAN/06 | 2028/JAN/31 | GOOD | 736.0735  |
| 1073729 | SNOW 5             | 093M | 2020/JAN/06 | 2028/JAN/31 | GOOD | 147.2825  |
| 1073847 | Max Group          | 093M | 2017/JUN/07 | 2025/JAN/30 | GOOD | 1328.3265 |
| 1073848 | Blunt MT Group     | 093M | 2017/JUN/07 | 2025/JAN/30 | GOOD | 516.5214  |
| 1074078 | SNOW6              | 093M | 2020/JAN/22 | 2028/JAN/31 | GOOD | 294.3325  |
| 1075207 |                    | 093M | 2020/MAR/13 | 2026/JAN/30 | GOOD | 1330.4071 |
| 1078578 | NETAZUL MT SOUTH   | 093M | 2020/SEP/12 | 2025/JAN/10 | GOOD | 589.522   |
| 1078579 | NETAZUL MT NORTH   | 093M | 2020/SEP/12 | 2025/JAN/10 | GOOD | 386.6429  |
| 1079283 | SUSKWA 1           | 093M | 2020/OCT/26 | 2025/JAN/10 | GOOD | 1232.8974 |
| 1079284 | SUSKWA 2           | 093M | 2020/OCT/26 | 2025/JAN/10 | GOOD | 736.1253  |
| 1079285 | MOUNTAIN 1         | 093M | 2020/OCT/26 | 2025/JAN/10 | GOOD | 810.894   |
| 1080058 | NETAZUL MT EAST    | 093M | 2020/DEC/12 | 2025/JAN/10 | GOOD | 1179.4861 |
| 1080111 | NETAZUL MT NORTH 2 | 093M | 2020/DEC/18 | 2025/JAN/10 | GOOD | 1838.2988 |
| 1080114 | BABINE MT          | 093M | 2020/DEC/18 | 2025/JAN/10 | GOOD | 1432.768  |
| 1080118 | HAZELTON WEST 1    | 093M | 2020/DEC/18 | 2025/JAN/10 | GOOD | 314.0512  |
| 1080122 | HAZELTON WEST 2    | 093M | 2020/DEC/18 | 2025/JAN/10 | GOOD | 184.7992  |
| 1080123 | PORPHYRY CREEK     | 093M | 2020/DEC/18 | 2025/JAN/10 | GOOD | 1832.4242 |
| 1080188 | FAR SOUTH          | 093M | 2020/DEC/22 | 2025/JAN/10 | GOOD | 667.2205  |

| 1080189 | FAR WEST       | 093M | 2020/DEC/22 | 2025/JAN/10 | GOOD | 888.8164  |
|---------|----------------|------|-------------|-------------|------|-----------|
| 1080197 | KISPIOX MT     | 093M | 2020/DEC/23 | 2025/JAN/10 | GOOD | 1803.1173 |
| 1080594 | MARCELLA       | 093M | 2021/JAN/15 | 2025/JAN/10 | GOOD | 459.7253  |
| 1080603 | KISPIOX MT 2   | 093M | 2021/JAN/16 | 2025/JAN/10 | GOOD | 368.083   |
| 1080686 | GOLDEN 1       | 093M | 2021/JAN/22 | 2025/JAN/10 | GOOD | 1845.8858 |
| 1080701 | GOLDEN 2       | 093M | 2021/JAN/23 | 2025/JAN/10 | GOOD | 1847.8362 |
| 1080984 | CORRIDOR CLAIM | 093M | 2021/FEB/04 | 2025/JAN/10 | GOOD | 1829.0521 |
| 1083041 | KISPIOX WEST   | 093M | 2021/JUN/11 | 2025/JAN/10 | GOOD | 275.7311  |
| 1083042 | KISPIOX EAST   | 093M | 2021/JUN/11 | 2025/JAN/10 | GOOD | 386.0591  |
| 1083043 | NETALZUL SOUTH | 093M | 2021/JUN/11 | 2025/JAN/10 | GOOD | 1106.1843 |
| 1088710 | GOLDEN 3       | 093M | 2022/JAN/17 | 2023/JAN/17 | GOOD | 1014.4526 |
| 1091878 | JAXON2022      | 093M | 2022/JAN/27 | 2023/JAN/27 | GOOD | 812.6832  |
| 1091901 | JAXON2         | 093M | 2022/JAN/27 | 2023/JAN/27 | GOOD | 92.3453   |
| 1093078 | JAXON 3        | 093M | 2022/FEB/06 | 2023/FEB/06 | GOOD | 424.581   |

All Mineral Claims are under the name Jaxon Mining Inc.

The property is situated approximately 40 kilometres north of Smithers, BC (Figure 3.1). Smithers, which has a population of 5,500 people, has offices for the BC Ministry of Energy and Mines. It is also a supply center for the local exploration and mining community and is a source of equipment and technical field personnel. It is currently not possible to access the Red Springs and Netalzul Mt Project in the Hazelton Property by road or trail. Therefore, access to the projects were supported by Helicopter from Smithers BC. The pick-up location was at the office of Canadian Helicopters at Smithers.

The Hazelton Property elevation ranges between 670 and 2,100 metres in above sea level (masl). Topographically, parts of the area are very steep and covered with talus. Much of the property is above the tree line and is capped with snow for 9 months of the year. At intermediate and low elevations, the rock outcrop is limited due to widespread glacial cover and thicker vegetation.

The vegetation is very spares at higher elevations but in the intermediate to lower elevations it includes jack pine, balsam, cedar and spruce forest, as well as deciduous birch and poplar. Small ponds are also scatter on the property. Four distinct locations at the Red Springs Project of Hazelton property have ponds, including Main Cirque, Red Springs Cirque, North Cirque and North-West Cirque.

The annual precipitation is approximately 56 centimetres or more. In winter the temperatures fall to -10° Celsius and there is often more than 1 metre of snow. Summers are mostly cool and wet only reaching an average temperature of approximately 15°Celsius.

Access to all portions of the property is best accomplished by chartered helicopter from Smithers.

### 4 Geological setting

## 4.1 Regional Geology

The Hazelton Property lies within the Omineca Mining Division and Intermontane Tectonic Belt, and its rocks are believed to form part of the Bowser Lake or Stikine terrains (BC Minfiles). The regional geology was mapped and compiled by Richards (1980, 1990). Regionally, the district is largely underlain by volcanic and sedimentary rocks of the Jurassic-age Hazelton and Bowser Lake groups, as well as younger sequences belonging to the Cretaceous Skeena and Kasalka groups. Regionally, these rocks are exposed along the north side of the Skeena Arch, which represents a transverse feature of the Stikine Terrain.

The Hazelton Group consists mainly of andesitic volcanic rocks and marine to nonmarine sedimentary rocks (Carter 1976; Massey et al, 2005), whereas the Bowser Lake and Skeena groups are composed mainly of marine to nonmarine clastic sedimentary rocks deposited in a fluvial-deltaic to nearshore shelf environment (MacIntyre et al, 1997, 2007; MacIntyre 2000, 2006). Late Cretaceous to Eocene transgressional to transtensional tectonic results in uplift, faulting, and tilting. Late Cretaceous to early Cenozoic intermediate-to-felsic plutons intruded the Mesozoic volcanic and sedimentary rocks along deep-seated strike-slip faults (Nokleberg et al. 2005; Nelson and Colpron 2007) and are associated with a pulse of post-accretionary porphyry Cu deposit in the Stikinia terrane (McMillan et al., 1995).

The Hazelton Property is mostly underlain by a folded package of Jura-Cretaceous sedimentary and volcanic rocks of the Hazelton, Bowser Lake, and Skeena groups that were deposited in a tectonically active, shallow-marine environment (Figure 4.1, Richards, 1980, 1990). The sediments include turbiditic siltstones, mudstones, argillites, quartzites, debris-flow grits and conglomerates, while the bimodal volcanic are represented by flows of andesite and rhyo-dacite, as well as some rhyolite domes. This package is intruded by Late Cretaceous stocks and plugs of the Bulkley Plutonic Suite (Friedman et al., 2000). Compositionally, the intrusive rocks mainly include diorite, granodiorite, tonalite and monzonite (Carter, 1976).

The Netalzul Mt Project is located at the Skeena Arch, where Mississipian to Neogene island-arc assemblages of the Stikine Terrane crop out in a window between the Bowser Basin to the northwest and the Nechako Basin to the southeast. The Skeena Arch is underlain by Jura-Cretaceous sedimentary and volcanic rocks of the Hazelton Group, Bowser Lake Group, and Skeena Group, followed by emplacement of the Bulkley (Late Cretaceous) and Babine and Nanika intrusive suites, with which economically significant porphyry and related mineralization is associated.

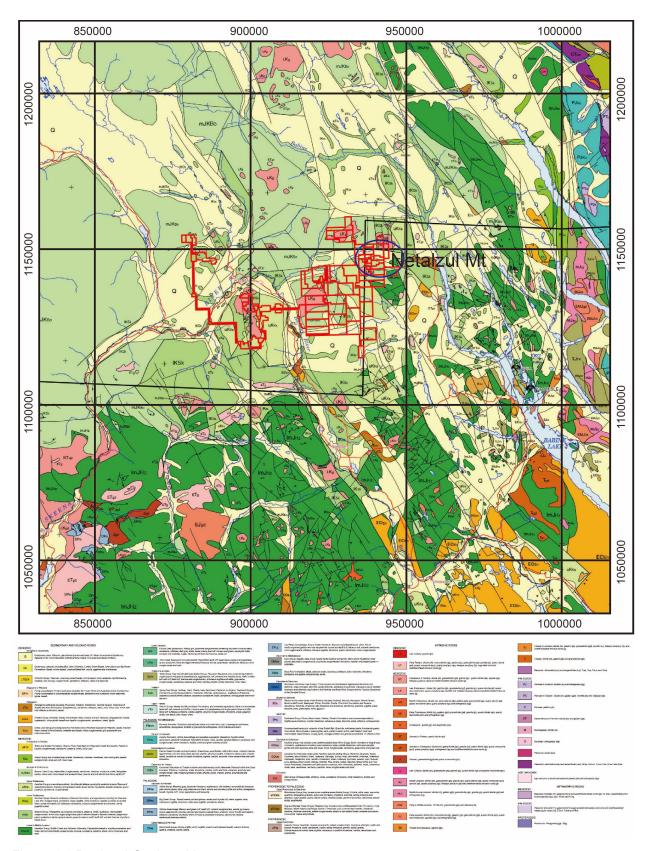



Figure 4.1 Regional Geology Map

#### 4.2 Property Geology

The Netalzul Mt Project is mainly dominated by Middle Jurassic to Late Cretaceous Bowser Lake groups, and the emplacement of Late Cretaceous Bulkley intrusions (Figure 4.4).

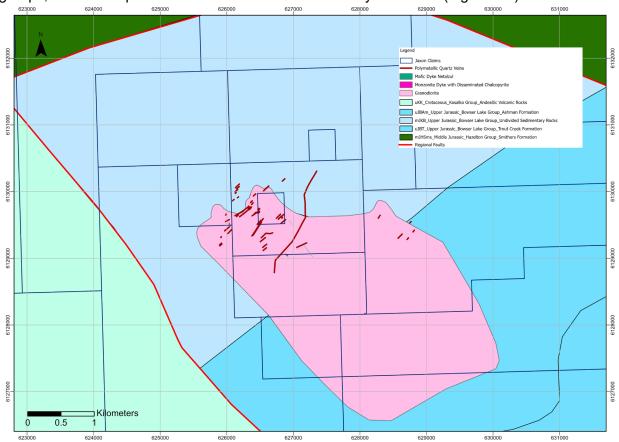



Figure 4.2 Geological map of Netalzul Mt Project

### 4.2.1 Sedimentary Sequence

The sedimentary sequence at Netalzul Mt Project includes Middle Jurassic Hazelton Group, Middle Jurassic to Late Cretaceous Bowser Lake Group, and Cretaceous Kasalka Group (Massey et al., 2005, BC).

The Netalzul Mt Project is mainly underlain by a package of sedimentary, volcanic and tuffaceous rocks of the Middle Jurassic to Late Cretaceous Bowser Lake Group. These rocks are consisting of interbedded epiclastic feldspathic and volcanic conglomerate, sandstone, siltstone, shale and argillite, minor coal and carbonaceous units. The Bowser Lake Group has been separated into the Trout Creek formation and Ashman Formation at southeast part of Netalzul Mt Project. The Bowser Lake Group forms the country rocks into which the granitoids of the Netalzul Mountain Intrusion have been emplaced. Near the contact with the granitoids, lithologies commonly include

fine grained latite and volcaniclastics, while further from the contact, pelitic and psammitic units have been observed.

The Middle Jurassic Smithers Formation of Hazelton Group is located at the north south part of the Project. The Smithers Formation is consisted of marine, shallow water feldspathic sandstone, siltstone, argillite, wacke, locally glauconitic and limy, minor ash, crystal and lapilli tuff, volcaniclastics, limestone.

The Cretaceous Kasalka Group is located at the southwest part, and it includes hornblende-feldspar porphyritic andesite flows and related pyroclastic, lahars, debris flows, breccias and epiclastic beds, basal conglomerate, lesser dacite, rhyodacite, basaltic andesite, quartz porphyry.

#### 4.2.2 Intrusive Units

Three phases of intrusions were identified, including first phase of a composite pluton of granitoid rocks that range in composition from diorite through granodiorite to granite, second phase of monzonite, and late phase of dolerite. The diorite-granodiorite intrusion is present as stock, while the monzonite and dolerite occur as dykes which intruded into the early diorite-granodiorite-granite stock. The sedimentary rock adjacent the intrusive contact has converted to hornfels.

The diorite-granodiorite stock is not associated with copper mineralization. The clear boundary between the diorite and granodiorite is not observed, and the composition is gradationally change from diorite to granodiorite. dominantly by granodiorite. Granodiorite is pinkish grey, coarse grained, and porphyritic. Phenocrysts are dominated by plagioclase, lesser quartz, and K-feldspar, with accessory biotite, tremolite/actinolite, and minor apatite and sphene. Granodiorite experienced varying degree of sericite-chlorite alteration. Plagioclase grains are moderately altered to sericite, and biotite grains are partly altered into chlorite.

The monzonite dyke is light grey-white color and porphyritic. Scattered phenocrysts include anhedral K-feldspar, plagioclase, biotite, and quartz, which are set in a groundmass of plagioclase and lesser K-feldspar with accessory hornblende and minor quartz and apatite. Some of the K-feldspar grains contain tiny exsolution blebs of sodic plagioclase. Monzonite is altered with alteration assemblage of sericite, chlorite and calcite. The hornblende and biotite are altered moderately to completely to chlorite-calcite, and plagioclase is altered slightly to sericite. A few replacement patches/ amygdules are of calcite with minor to moderately abundant K-feldspar and quartz. Some monzonite dykes are unmineralized, while some monzonite dykes are associated with disseminated chalcopyrite mineralization. The relationship between mineralized and unmineralized monzonites is unclear.

Dolerite dyke is dark grey. The dolerite dyke is post mineralization. The plagioclase phenocrysts occur in a groundmass containing lathy plagioclase and equant clinopyroxene, with minor/accessory opaque (in part at least magnetite) and trace biotite. Locally, the plagioclase phenocrysts are altered to sericite.

Numerous cm- to m scale quartz veins were observed in the composite pluton of granitoid rocks, and the veins are associated with chlorite and potassic alteration and Cu-Mo-Ag-Pb-Zn

mineralization. The majority of the veins are small (cm-scale) and only show copper mineralization in the form of chalcopyrite, while several larger veins are present with tetrahedrite, galena, molybdenite, and sphalerite.

### 4.2.3 Alteration and Mineralization



Figure 4.3 Potassic, chlorite and sericite alteration associated with quartz veins



Figure 4.4 Potassic and chloritic alteration associated with quartz veins

Two main styles of alteration are recognized, including sericite-calcite alteration and potassic-chlorite alteration. Sericite-calcite alteration is associated with monzonite dyke (Figure 4.3), and plagioclase and biotite phenocrysts in monzonite are moderately to strongly altered into muscovite-calcite. Disseminated chalcopyrite mineralization is related to monzonite and sericite-calcite alteration.

Potassic and chlorite alteration is associated with mm-cm scale quartz veins. Quartz veins display alteration haloes, with pink potassic alteration present immediately adjacent to the veins, and greenish chloritic alteration further away from the veins. Alteration haloes are generally slightly thicker than the vein width, with smaller veins (~1 cm width) having 1-2 cm alteration haloes, and larger veins having concomitantly larger alteration haloes.

In many cases in the field, veins may be very narrow and negatively weathered, but can be recognized by the alteration haloes, which show as more resistant ridges. Veins are composed of milky quartz, and contain disseminated sulphides – the most common is chalcopyrite and pyrite, which are observed even in narrow veins, but molybdenite, sphalerite, galena and

Two types of mineralization were observed on the Netalzul Mt, including polymetallic veins and disseminated chalcopyrite. The mm- to m-scale quartz veins contain chalcopyrite and pyrite ± galena, tetrahedrite, molybdenite and sphalerite. The veins have potassic and chloritic alteration haloes, and minor disseminated sulfides may be seen within the alteration haloes. Although several larger veins (>1 m width) have been discovered, the bulk of mineralization within the project area comprises mm- to cm-scale veins, which often form sets with several veins per meter. A few dykes of monzonite with disseminated chalcopyrite and pyrite have been noted.

### 4.2.4 Structure

Structure at Netalzul Mt Project has not been well studied. CSA Global did a brief study on the structure in summer 2021. However, due to limited time that CSA geologists spent on site, more work need to be done to understand the relationship between structure and mineralization.

A few structural events were identified on the Netalzul Mt Project by CSA. The earliest event observed is a deformation event (D1) affecting only the Bowser Lake Group, which is identified by a transposition fabric and ptygmatic folded veinlets within metasediments, particularly on the easter margin of the Project. D1 event was happened before the emplacement of the composite Bulkley intrusion of granite, granodiorite, diorite.

Mineralized quartz veins were emplaced into the Bulkley intrusion. The veins are generally NEstriking and dip moderately to the southeast. Locally, a conjugate set of veins is subvertical. However, the structure that controlled the veins is not well studied.

An intense N-S spaced cleavage (jointing) affects the Bulkley intrusion, and dolerite dykes are emplaced along the N-S spaced cleavage, as well as along SE-dipping vein structures. The dolerite has been affected by the youngest deformation phase, and episode of dextral faulting, with major faults that oriented NW-SE to NS.

#### 5 History

There has been sporadic exploration work completed on various small parts of the Netalzul Mt Project by a variety of different operators since 1969. The first documented work was carried out by Twin Peaks Mines Inc.

R. W. Woolverton carried out a work program for Twin Peak Mines Ltd in between Aug 3<sup>rd</sup> and Aug 5<sup>th</sup>, 1969. An air-borne magnetic and electromagnetic survey program over the claims area aim to define the molybdenum mineralization, first reported in 1963, occur as films in fractures and dissemination in granite. The survey conducted 88-line miles airborne magnetic and electromagnetic survey over about 15 square miles. This work outlined 28 conductors. One 4000 feet diameter semi-circular map low which is partly sur-rounded by an irregular mag high with accompanying zones of conductivities strongly suggests the existence of porphyry mineralization.

A work program was carried out by R. W. Woolverton for Twin Peak Mines Ltd in between Jun 15th and Aug 15th, 1972. He reported the result of systematically thin section exploration program by which to detect to alteration halo to define the potential porphyry type mineralization like it was existed surrounding the Babine porphyry deposits. 16 petrography samples taken from 4 site the geologist thought the best representative to the studied area. The thin section analysis resulted that weak biotization was presented in some specimens of intrusive and volcanic rocks in two of the sampled sites but not repeated in other specimens in other two sites. No chlorite alteration zone developed, by which author R. W. Woolverton concluded that a hidden porphyry environment was unlikely.

Colin Harivel conducted an exploration program in 1985. A brief geological mapping work had been done in this area. Ten rock samples taken with a few of them returned anomalous Ag and one sample returned Au to 0.012oz/t, by which this area warrants for further intensive prospecting and mapping.

Robert E. Reid also carried out an exploration program in 1985. He reported that banded veins up to one meter in width and containing quartz chalcopyrite, tetrahedrite, and pyrite are associated with sheeted fracture and shear zones in the granodiorite, values up to 3150 ppb gold and 76.76 oz/ton silver have been obtained, Veins and masses up to one meter in width were also located in the altered sedimentary rocks. Mineralization consists of quartz, arsenopyrite, galena and pyrite, and precious metal values assay up to 3290 ppb gold and 10.26 oz/ton silver.

Chris Warren and Lorne Warren did exploration work in 2010 for Logan Miller-Tait. A total of 48 rock samples, 6 silt samples, and 20 soil samples were taken. Only 22 rock samples and the 6 silt samples were assayed. The most interesting assay came from sample NATMR006 which assayed >10,000 ppm cu, >10,000 ppm Pb, >100 ppm Ag, 930ppm As, 2597.9 ppb Au, >2000 ppm Cd, >2000 ppm Sb from what appears to be a fracture-controlled shear zone in granodiorite. In the early 2010s, Amarc Resources Ltd. staked most areas and conducted geophysical, geochemical and drilling work on the east side of Netalzul Mt. To date, no drilling or detailed prospecting has been done in the areas.

Netalzul is marked by strong magnetic anomalies that are indicative of a porphyry system. Five historical mineral showings recorded grades of up to 3150 ppb gold and 2387 g/t silver. Jaxon's interpretation of the historical geophysical and surface work indicates significant potential for the delineation of a Cu-Mo porphyry system with associated high-grade silver and gold polymetallic deposits.

Table 5.1 Netalzul Mt exploration history

| Year | Owner/Operator        | Work done             | Assessment Report No. |
|------|-----------------------|-----------------------|-----------------------|
| 1969 | Twin Peaks Mines Ltd. | Airborne geophysics   | 2663                  |
| 1972 | Twin Peaks Mines Ltd. | Petrographic analysis | 3969                  |
|      | & Selco Mining Corp.  |                       |                       |
|      | Ltd.                  |                       |                       |
| 1985 | Atna Resources Ltd.   | Prospecting, silt     | 13924                 |
|      | Tom Richards          | sampling              |                       |
| 1985 | Atna Resources Ltd.   | Geochemical works     | 15186                 |
| 2010 | Logan Miller-Tait     | Prospecting and       | 32043                 |
|      | _                     | Geochemistry          |                       |
| 2012 | Amarc Resources Ltd   | Geochemical and       | 33499                 |
|      |                       | Geophysical works on  |                       |
|      |                       | the east of Jaxon's   |                       |
|      |                       | claims                |                       |
| 2013 | Amarc Resources Ltd   | Geochemical and       | 34084                 |
|      |                       | Geophysical works on  |                       |
|      |                       | the east of Jaxon's   |                       |
|      |                       | claims                |                       |

## 6 Deposit type

Mineralization in the region is mostly copper-molybdenum porphyries and silver-gold-antimony-lead-zinc veins related to the Bulkley intrusions.

The Netalzul Mt project is marked by surficial high-grade Ag-Au-Cu-Mo-W-Zn-Pb-Sb polymetallic occurrences and sporadic monzonite dykes with disseminated chalcopyrite. Jaxon's conceptual geological model of Netalzul Mt depicts four high-grade silver dominated polymetallic mineralization zones and the deeper Cu-Mo-Au porphyry system.

The epithermal polymetallic sulfide mineralization at Netalzul Mt is typical intermediate sulfidation (IS) type which is characterized by silver-rich tetrahedrite, iron-poor sphalerite and Mn-rich carbonate minerals, plus/minus stibnite, galena and gold. The tetrahedrite crystals can be seen in both drilling core and on surface outcrops. The tetrahedrite is associated with the quartz crystals and may represent the last phase of mineralization at Netalzul Mt.

The porphyry mineralization is mainly hosted by monzonite porphyry dykes with disseminated mineralization of pyrite, chalcopyrite, minor molybdenite. Minor disseminated sulfides may be seen within the alteration haloes of quartz veins in granodiorite.

## 7 Exploration

Jaxon's team undertook an exploration program during June 04, 2021 ~ Oct 20, 2021 on Netalzul Mt Projects of Hazelton property, spending a total amount of 2,219,892.15 CAD (Appendix A). Two new artisanal mining adits (Adit 3 and Adit 4) were discovered in the east extension of the Daisy South Adit Zone (Figure 7.1).

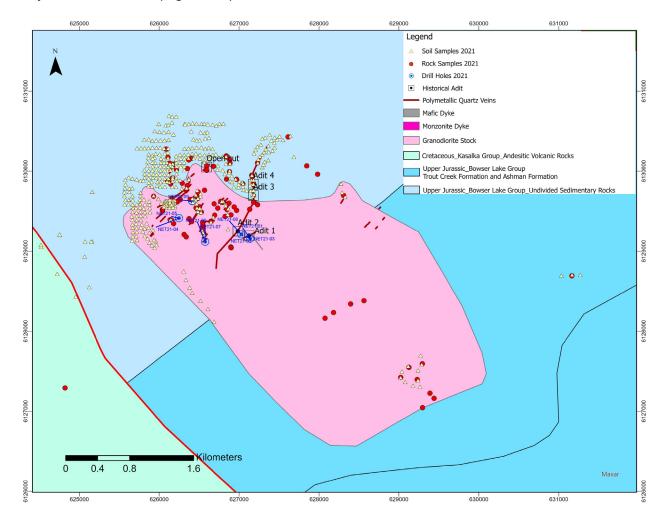



Figure 7.1 Geological map of Netalzul Mt project with rock, soil samples, and drill holes in 2021

Exploration at Netalzul Mountain has focused primarily on the northern portion of the Netalzul Mountain intrusion, and several target areas have been identified, including four polymetallic massive sulfide-quartz veining zones. During the 2021 season, Jaxon Mining completed the following work on the Netalzul Project:

- Rock Sampling Program
- Soil Sampling Program
- Structure Mapping and Assessment
- Diamond Drilling program
- Induced polarization (IP) and magnetotelluric (MT) Survey
- Petrographic Study

- 3D footprint model
- Water sampling

The Jaxon's field team conducted rock sampling, soil sampling, and drilling programs. The geochemistry data of rock and soil samples are also used for a 3D footprint model study by Fathom geophysics. Jaxon Mining commissioned CSA Global to undertake a structural mapping program and structural assessment of Netalzul Mt project.

Jaxon also engaged SJ Geophysics Ltd to design and execute IP/MT program on the Netalzul Project during Aug 28 ~Sep 14. The 2021 IP/MT survey focused on the north-central part of the Netalzul Mt project. The program includes the acquisition of a DC resistivity/induced polarization (IP) data and short interval magnetotellurics (MT) data utilizing the Volterra Acquisition System.

The geological map of Netalzul Mt Project was modified based on the observation of the 2021 field season, and the new geological map of Netalzul Mt Project is shown on the Figure 7.1. A few modifications were made, including boundary of the known intrusive bodies, and outlining a great number of high-grade polymetallic veins. In addition, two historical artisanal adits were observed in 2021 field work.

#### 7.1 Rock sampling

The field team expanded the dataset around the Netalzul Mt Project. Total 119 rock samples have been collected at Netalzul Mt Project, including 81 mineralized rock samples and 38 geochemistry samples, and the samples are displayed on Figure 7.2. The geochemistry samples were collected for geochemistry 3D footprint study. Most samples are outcrop rock samples. Rock sample locations were indicated in the field using flagging tags labeled with sample numbers. UTM coordinates were determined for all sample locations with handheld Garmin GPS instruments.

These rock samples have been analyzed by MSA Lab in Langley, BC. Highlights of the rock sampling program are 29 samples with more than 1000 ppm copper, 10 samples with more than 200 ppm molybdenum, and 10 samples with more than 100 g/t silver. The highlight samples were listed on Table 7.1. The copper and silver values of the samples are shown on the Figures 7.3, 7.4, and listed in Appendix B.

Ag grades can be up to 2915 g/t with 0.39 g/t Au, 0.35% Cu, 2.06% Pb and 0.43% Sb from a one metre chip outcrop sample (sample ID# 72013) at the Adit 4 area within the Daisy South Adit Zone (Figure 7.5); Au grades can be up to 7.01 g/t with 49 g/t Ag and 0.53% Cu from a one metre quartz vein zone chip outcrop sample (sample ID# A0027300) at Daisy North Contact Zone (Figure 7.6); Cu grades can be up to 1.47% with 20 g/t Ag from a porphyry monzonite dyke outcrop grab sample (sample ID# 72521) at the southwest area of Netalzul Mt project (Figure 7.7). These rock samples have typical epithermal intermediate sulfidation (IS) mineralization or display the disseminated porphyry characteristics generated by deep porphyry systems.

Table 7.1 Significant Assay Results from Rock Samples at Netalzul Mt in 2021

| Sample<br>ID | Easting | Northing | Elevation | Description                                                                                                      | Au<br>ppm | Ag<br>ppm | Cu<br>ppm | Pb<br>ppm | Sb<br>ppm | Zn<br>ppm |
|--------------|---------|----------|-----------|------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| 72013        | 627177  | 6129836  | 1702      | Breccia QV with tetrahedrite in adit 4 area                                                                      | 0.39      | 2915      | 3518      | 20600     | 4252      | 738       |
| 72004        | 626772  | 6129624  | 1554      | Sulfide QV at Daisy<br>central zone                                                                              | 1.54      | 1960      | 22750     | 19300     | 10000     | 5768      |
| A0027292     | 626228  | 6129617  | 1670      | 2 m wide polymetallic<br>QV at Daisy central<br>zone                                                             | 0.82      | 442       | 5824      | 41400     | 3336      | 23100     |
| A0027300     | 626389  | 6129647  | 1589      | 4 QVs ~ 10-40cm<br>each, total 3-4m wide<br>at Daisy Central zone                                                | 7.01      | 49.1      | 5301      | 681       | 39        | 1523      |
| 72008        | 627179  | 6129695  | 1689      | 2m wide massive<br>sulfide QV veins at adit<br>3 area                                                            | 0.16      | 298       | 2651      | 33600     | 591       | 7040      |
| 72035        | 626546  | 6129330  | 1764      | Sulfide QV 30cm                                                                                                  | 4.41      | 64.7      | 2110      | 1588      | 300       | 315       |
| 72007        | 627231  | 6129581  | 1716      | Strongly oxidized QV,<br>abundant pyrite and<br>chalcopyrite patches                                             | 0.15      | 93        | 28890     | 56        | 8         | 98        |
| 72015        | 627846  | 6130067  | 1572      | QV float with chalco-<br>py. and black minerals.                                                                 | 0.18      | 234       | 11590     | 1557      | 630       | 569       |
| 72018        | 625930  | 6129686  | 1587      | 50-100cm thick striking<br>25, dip at 70, str.<br>Py/chalco-py.                                                  | 0.7       | 101       | 6242      | 808       | 952       | 1913      |
| 72009        | 627177  | 6129836  | 1702      | Adit 4 area, QV<br>zone >15m                                                                                     | 0.09      | 147       | 683       | 4528      | 587       | 300       |
| 72521        | 628074  | 6128162  | 1927      | disseminate monzonite<br>porphyry dyke under a<br>big granodiorite bold in<br>the SW area                        | 0.07      | 20.2      | 14710     | 68        | 7         | 152       |
| 72019        | 626169  | 6129914  | 1607      | strongly FeOx altered,<br>10-15cm wide, ds py                                                                    | 0.2       | 125       | 1398      | 331       | 167       | 469       |
| A0027298     | 626406  | 6129370  | 1690      | QV and granite in the fracture zone                                                                              | 0.4       | 92        | 1882      | 842       | 1011      | 2672      |
| 72041        | 626181  | 6129346  | 1671      | QV and Granite with<br>massive chalco-Py and<br>less Py, main QV only<br>2-3 cm wide                             | 0.03      | 29        | 11440     | 5         | 5         | 58        |
| A0027316     | 626844  | 6129900  | 1646      | QV float on the east valley slope                                                                                | 0.15      | 111       | 786       | 1268      | 1685      | 74        |
| 72006        | 627182  | 6129611  | 1685      | Large QV > 50cm in<br>hornfels. it is in contact<br>zone between hornfels<br>and granite,                        | 0.08      | 63.1      | 1693      | 637       | 615       | 237       |
| 72002        | 626487  | 6129738  | 1528      | 6 QVs, strongly FeOx<br>altered, locally<br>sulphide, largest one<br>15-20cm wide, others<br>2-5cm wide          | 0.06      | 79.8      | 595       | 162       | 5         | 16        |
| 72521-1      | 626339  | 6129177  | 1990      | monzonite dyke with<br>diss sulfide, extension<br>of Monzonite dyke in<br>hole 5                                 | 0.03      | 40.4      | 2769      | 207       | 98        | 156       |
| 72012        | 627164  | 6129927  | 1760      | >3m wide QV Breccia<br>zone, QV breccia same<br>as adit 4                                                        | 0.08      | 64.1      | 422       | 484       | 405       | 114       |
| 72033        | 626147  | 6129602  | 1606      | QV and granite, see<br>Mo, Py and gray color<br>Quartz, see yellow Mo<br>oxidation, total QV<br>zone > 20 meters | 0.13      | 40.1      | 1873      | 360       | 58        | 123       |
| 72010        | 626969  | 6129511  | 1594      | QV > 5cm, Py/Chalopy<br>in QV group zone > 2m<br>wide                                                            | 0.02      | 39.2      | 2834      | 324       | 16        | 142       |

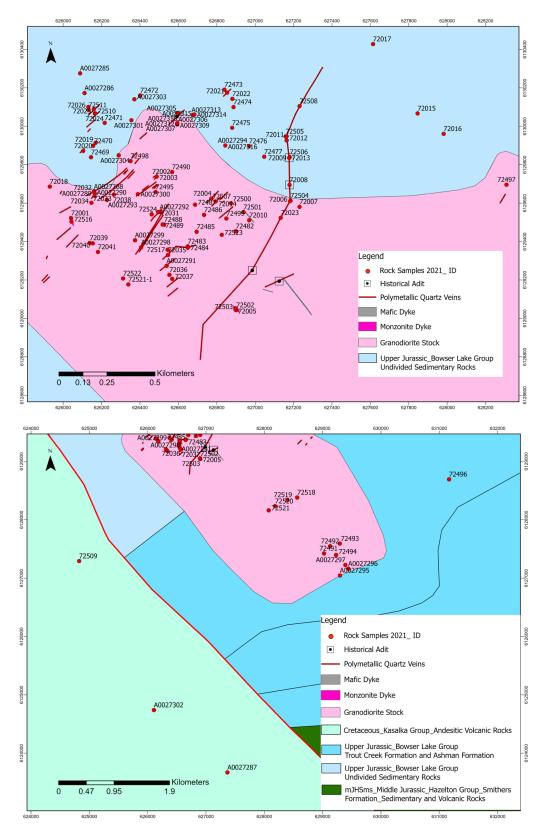



Figure 7.2 Rock samples with ID in 2021

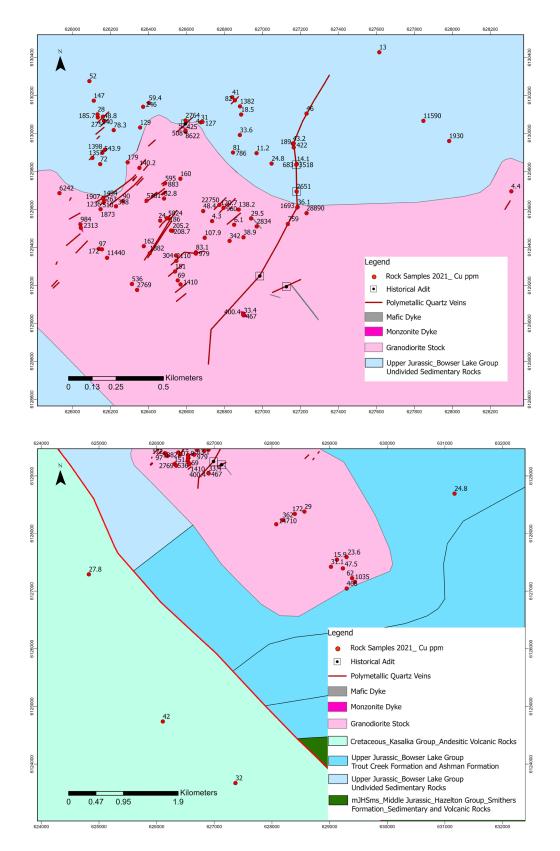



Figure 7.3 Rock samples with copper value

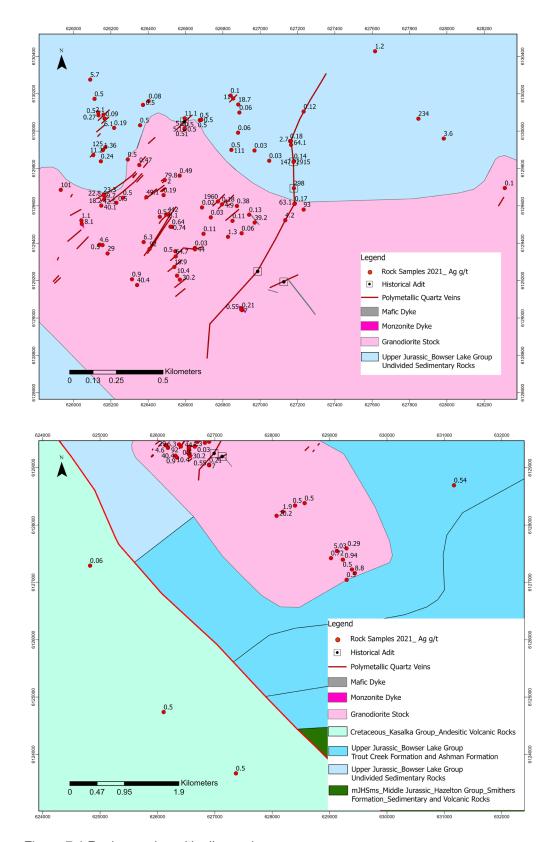



Figure 7.4 Rock samples with silver value



Figure 7.5 Adit 3 (left); one meter chip sample (#72013) from Adit 4 area with Ag grade @ 2915 g/t (right).



Figure 7.6 One meter chip sample (A0027300) at Daisy North Contact Zone area with Au grades of up to  $7\,\mathrm{g/t}$ .



Figure 7.7 Monzonite dyke grab sample (72521) with Cu grades of up to 1.47% from the southwest area of Netalzul Mt.

### 7.2 Soil sampling

Approximately 500 g to 600 g of soil was sampled at a depth of approximately 25-30 cm from surface. Total 409 soil samples have been collected by Jaxon's field crew at a grid of 50m\* 50m on the Netalzul Mt Project in 2021 (Figure 7.1). Soil sample locations were indicated in the field using flagging tags labeled with sample numbers. UTM coordinates were determined for all sample locations with handheld Garmin GPS instruments. Those soil samples were tested in the field with Olympus Handheld Vanta XRF analyzer.

The details data for the soil samples are listed in Appendix C. Significant assay results are listed in Table 7.2. The sample ID, copper, and zinc values are displayed on Figure 7.8, 7.9, 7.10. The significant results are 91 samples that return copper value more than 500 ppm, 33 samples that return molybdenum value more than 100 ppm, 80 samples that returned zinc value more than 300 ppm. A large strong Zn anomaly (up to 3681 ppm; 11.7% of soil samples >1000 ppm) was identified in the strongly faulted hornfels area to the north boundary of the Netalzul granodiorite intrusion.

Table 7.2 Significant assay results from soil samples at Netalzul Mt in 2021

| Sample ID | Easting | Northing | Elevation | Mo_ppm | Pb_ppm | Zn_ppm | Cu_ppm | Sb_ppm | Ag_ppm |
|-----------|---------|----------|-----------|--------|--------|--------|--------|--------|--------|
| 72553     | 625945  | 6130175  | 1573      | 5      | 69     | 137    | 1129   | 53     | 8      |
| 72564     | 626161  | 6130084  | 1594      | 83     | 308    | 443    | 1083   | 23     | 23     |
| 72625     | 625881  | 6129541  | 1682      | 159    | 32     | 105    | 1033   | 25     | 6      |
| 72630     | 625761  | 6129646  | 1648      | 13     | 37     | 112    | 1026   | 1      | 0.5    |
| 72634     | 625769  | 6129446  | 1634      | 100    | 76     | 557    | 2838   | 1      | 0.5    |
| 72635     | 625771  | 6129392  | 1626      | 169    | 18     | 113    | 1372   | 1      | 0.5    |
| 72636     | 625780  | 6129337  | 1625      | 199    | 43     | 193    | 2058   | 1      | 6      |
| 72637     | 625820  | 6129287  | 1642      | 42     | 1      | 98     | 7572   | 1      | 0.5    |
| 72638     | 625867  | 6129297  | 1656      | 138    | 10     | 132    | 3894   | 1      | 0.5    |
| 72639     | 625843  | 6129352  | 1658      | 218    | 14     | 93     | 1128   | 1      | 0.5    |
| 72640     | 625819  | 6129288  | 1656      | 45     | 22     | 141    | 2228   | 1      | 0.5    |
| 72646     | 625768  | 6129301  | 1622      | 88     | 17     | 78     | 1949   | 1      | 5      |
| 72655     | 625923  | 6129266  | 1676      | 93     | 5      | 107    | 1304   | 1      | 0.5    |
| 72656     | 625874  | 6129626  | 1663      | 191    | 19     | 161    | 1734   | 1      | 5      |
| 72823     | 626197  | 6129552  | 1589      | 36     | 28     | 226    | 3236   | 1      | 0.5    |
| 72825     | 626191  | 6129604  | 1592      | 79     | 145    | 244    | 1050   | 23     | 5      |
| 72864     | 625656  | 6129439  | 1560      | 84     | 63     | 267    | 1736   | 1      | 0.5    |
| 72867     | 625668  | 6129296  | 1550      | 63     | 6      | 71     | 1556   | 1      | 0.5    |
| 72873     | 625719  | 6129242  | 1557      | 118    | 31     | 162    | 1199   | 1      | 0.5    |
| 72874     | 625717  | 6129294  | 1598      | 89     | 13     | 80     | 2751   | 1      | 0.5    |
| 72878     | 625716  | 6129488  | 1616      | 37     | 86     | 124    | 1017   | 1      | 5      |
| A0027354  | 626517  | 6129532  | 1639      | 32     | 33     | 37     | 1844   | 1      | 0.5    |
| A0027355  | 626523  | 6129488  | 1658      | 141    | 62     | 65     | 1185   | 23     | 0.5    |

|          |        | ,       |      |     |       |      |      |     |     |
|----------|--------|---------|------|-----|-------|------|------|-----|-----|
| A0027386 | 626370 | 6129916 | 1482 | 24  | 18    | 256  | 1437 | 1   | 0.5 |
| A0027387 | 626342 | 6129791 | 1399 | 38  | 29    | 196  | 3744 | 1   | 0.5 |
| A0027460 | 626171 | 6129936 | 1618 | 65  | 223   | 672  | 1524 | 1   | 15  |
| A0027465 | 626112 | 6130060 | 1638 | 27  | 145   | 1313 | 1116 | 1   | 9   |
| A0027489 | 625864 | 6129815 | 1529 | 89  | 35    | 78   | 1016 | 1   | 0.5 |
| A0027936 | 626214 | 6129918 | 1572 | 25  | 55    | 823  | 1023 | 1   | 9   |
| A0027942 | 626148 | 6130074 | 1601 | 62  | 166   | 1267 | 4637 | 1   | 6   |
| A0027943 | 626136 | 6130094 | 1613 | 45  | 122   | 2953 | 1200 | 31  | 8   |
| A0027944 | 626168 | 6130058 | 1598 | 53  | 130   | 2106 | 1338 | 1   | 16  |
| A0027958 | 626168 | 6129877 | 1602 | 26  | 58    | 1190 | 1674 | 1   | 11  |
| A0027971 | 626334 | 6128646 | 1639 | 25  | 8     | 81   | 1792 | 1   | 0.5 |
| A0027975 | 626609 | 6128280 | 1557 | 26  | 18    | 98   | 1260 | 1   | 0.5 |
| A0028000 | 626155 | 6129391 | 1664 | 107 | 25    | 191  | 1022 | 1   | 0.5 |
| A0028958 | 626369 | 6129900 | 1491 | 47  | 28    | 230  | 1095 | 1   | 0.5 |
| A0028980 | 627171 | 6129690 | 1690 | 220 | 12146 | 3630 | 2302 | 840 | 165 |
| A0028987 | 626679 | 6129430 | 1668 | 79  | 28    | 137  | 1003 | 36  | 0.5 |

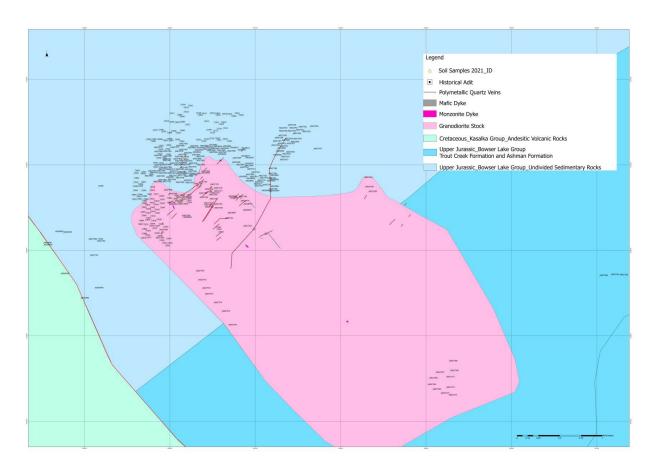



Figure 7.8 Soil samples with ID in 2021

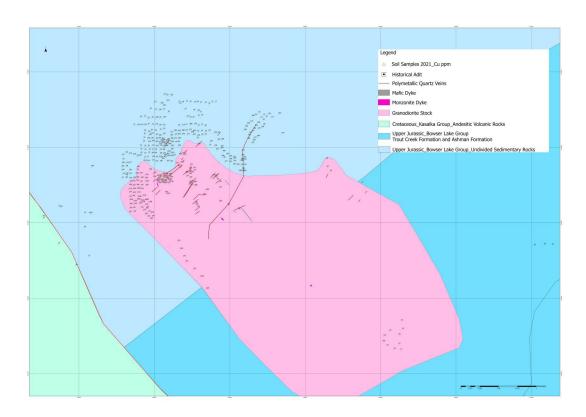



Figure 7.9 Soil samples with copper value in 2021

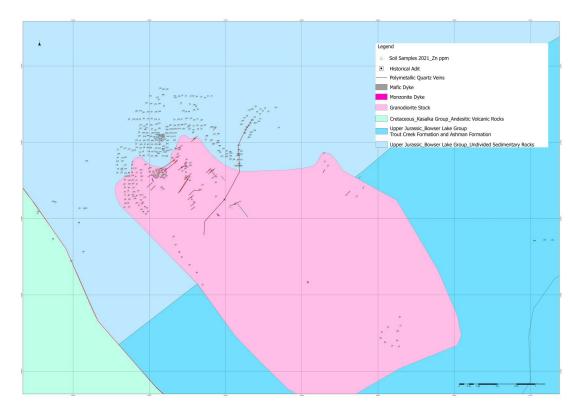



Figure 7.10 Soil samples with zinc value in 2021

## 7.3 Diamond Drilling Program

The exploration program began on June 3 with drilling commencing on July 25 and continuing until Sep 20. Final crew shift was Sep 22 when the last shipment of samples was sent to Smithers. CJL Enterprises Ltd. constructed five 16 x 16 foot wooden pads for the drilling machine, the woods were moved by Canadian Helicopters. Canadian Helicopter of Smithers used helicopters to move the drill cores and materials to the camp site. Crews stayed in Smithers during Sep 22~Oct 20, and a yard was used for core logging. The town also provided accommodation and food for the non-resident crews.

Dorado Drilling Ltd. completed 9 drill holes diamond (core) drilling program on the Netalzul project with a total length of 2,483m. The locations and traces of the nine drill holes are shown in the Figure 7.11. Assay data, logging forms, magnetic susceptibilities are attached in Appendix D. Table 7.3 is a summary of drill hole information, including coordinate, depth, azimuth, and dip angle. Table 7.4 is a summary of the significant drill intersections.

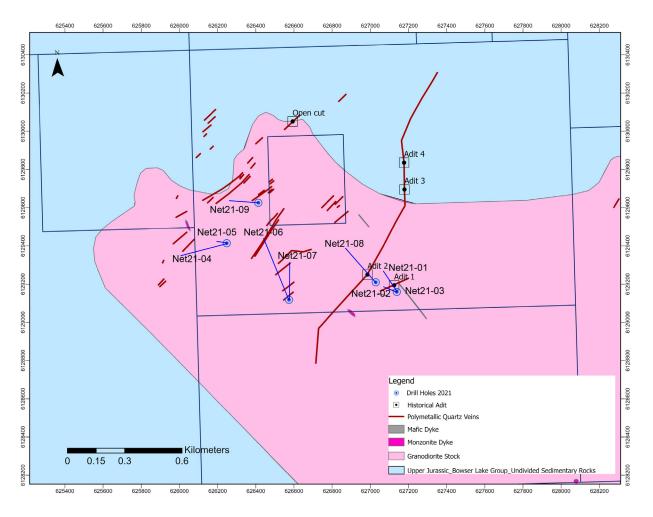



Figure 7.11 Locations and traces of 9 drill holes

Table 7.3 Detail information of 9 drill holes

| HOLE ID   | Easting | Northing | Elevation (m) | Depth (m) | Azimuth | Dip |
|-----------|---------|----------|---------------|-----------|---------|-----|
| Net21-001 | 627139  | 6129159  | 1679          | 206       | 310     | 47  |
| Net21-002 | 627139  | 6129159  | 1679          | 233       | 296     | 74  |
|           |         |          |               |           |         |     |
| Net21-003 | 627139  | 6129159  | 1679          | 341       | 0       | 90  |
| Net21-004 | 626248  | 6129414  | 1643          | 357       | 255     | 45  |
| Net21-005 | 626248  | 6129414  | 1643          | 98        | 280     | 65  |
| Net21-006 | 626574  | 6129118  | 1802          | 433       | 340     | 47  |
| Net21-007 | 626574  | 6129118  | 1802          | 251       | 0       | 47  |
| Net21-008 | 627028  | 6129210  | 1698          | 339       | 325     | 47  |
| Net21-009 | 626413  | 6129626  | 1612          | 225       | 265     | 48  |

Table 7.4 Significant assay results from nine holes - 2021 drilling program at Netalzul Mt

| Hole ID   | From (r | To (m) | Meter | Au   | Ag  | Cu    | Mo  | Pb    | Sb   | Zn    | CuEq | Lithology |
|-----------|---------|--------|-------|------|-----|-------|-----|-------|------|-------|------|-----------|
|           |         |        |       | ppm  | ppm | ppm   | ppm | ppm   | ppm  | ppm   | %    |           |
|           |         |        |       |      | NET | 21-01 |     |       |      |       |      |           |
|           | 22.9    | 37.4   | 14.5  | 0.07 | 28  | 807   | 30  | 312   | 340  | 690   | 0.50 | GRD/PQV   |
| including | 22.9    | 30.1   | 7.2   | 0.12 | 53  | 1296  | 41  | 613   | 649  | 1314  | 0.93 | GRD/PQV   |
| including | 22.9    | 24     | 1.1   | 0.57 | 354 | 7383  | 45  | 3549  | 4214 | 4443  | 5.03 | SQV       |
| and       | 148     | 158    | 10    | 0.08 | 10  | 890   | 91  | 4407  | 133  | 2001  | 0.47 | GRD/PQV   |
| including | 151     | 152    | 1     | 0.65 | 76  | 4146  | 34  | 42200 | 1076 | 18000 | 3.37 | GRD/QV    |
|           |         |        |       |      | NET | 21-02 |     |       |      |       |      |           |
|           | 26.7    | 39.6   | 12.9  | 0.01 | 4   | 848   | 27  | 37    | 42   | 75    | 0.15 | GRD/PQV   |
| including | 27.6    | 28.6   | 1     | 0.12 | 36  | 1358  | 58  | 276   | 458  | 338   | 0.64 | GRD/PQV   |
| including | 38.6    | 39.6   | 1     | 0.01 | 8   | 6009  | 105 | 8     | 7    | 62    | 0.73 | GRD/PQV   |
| and       | 65      | 85     | 20    | 0.02 | 7   | 1042  | 22  | 26    | 62   | 135   | 0.21 | GRD/PQV   |
| including | 66      | 69.9   | 3.9   | 0.06 | 19  | 1217  | 33  | 69    | 210  | 336   | 0.41 | GRD/PQV   |
| including | 70.8    | 71.9   | 1.1   | 0.28 | 104 | 4359  | 8   | 336   | 1122 | 1081  | 1.73 | SQV       |
| and       | 154.7   | 155.7  | 1     | 0.12 | 19  | 3153  | 10  | 1110  | 477  | 9949  | 0.99 | GRD/PQV   |
|           |         |        |       |      | NET | 21-03 |     |       |      |       |      |           |
|           | 26.5    | 32.5   | 6     | 0.11 | 8   | 503   | 33  | 563   | 132  | 594   | 0.26 | GRD/PQV/M |
| including | 26.5    | 27.5   | 1     | 0.46 | 12  | 1168  | 5   | 209   |      | 148   |      | GRD/PQV/M |
| including | 31.5    | 32.5   | 1     | 0.11 | 24  | 1030  | 142 | 2737  | 579  | 1839  |      | GRD/PQV/M |
| and       | 222.6   | 225.6  | 3     | 0.01 | 2   | 1555  | 114 | 17    | 14   | 68    |      | GRD/PQ    |
|           |         |        | _     | 0.01 |     | 21-04 |     |       |      | -     | 0.2. | J.10/1 Q  |
|           | 164     | 165    | 1     | 0.01 | 5   | 1731  | 10  | 12    | 5    | 60    | 0.23 | M         |
| and       | 316     | 321    | 5     | 0.08 | 14  | 399   | 5   | 21    | 111  | 84    |      | GRB/M/PQV |
| including | 316     | 317    | 1     | 0.17 | 53  | 1349  | 4   | 21    | 474  | 188   |      | M/QV      |
| merdang   | 310     | 517    | _     | 0.17 |     | 21-05 | -   |       | 474  | 100   | 0.70 | 1417 Q.4  |
|           | 33.65   | 46.8   | 13.15 | 0.01 | 7   | 2967  | 133 | 9     | 5    | 165   | 0.44 | M/GRD     |
| including | 39.4    | 46.8   | 7.4   | 0.01 | 12  | 4520  | 192 | 11    |      | 260   | 0.71 |           |
| and       | 64.8    | 67.8   | 3     | 0.01 | 2   | 568   | 168 | 9     |      | 155   |      | GRD/QV    |
| anu       | 04.0    | 07.8   | د     | 0.13 |     | 21-06 | 100 |       | 0    | 133   | 0.24 | GKD/QV    |
|           | 43      | 72.3   | 29.3  | 0.00 | 1   | 660   | 23  | 9     | 7    | 38    | 0.11 | GRD/PQV/M |
| including | 66      | 67     | 25.3  | 0.01 | 8   | 4509  | 19  | 9     | 7    | 59    | 0.11 |           |
| including | 71.2    | 72.3   | 1.1   | 0.01 | 7   | 3237  | 25  | 13    |      | 43    | 0.41 |           |
| and       | 95      | 109.2  | 14.2  |      | 50  | 1281  | 6   | 113   |      | 453   |      |           |
|           |         |        | 14.2  | 0.10 | 178 | 4548  |     | 400   |      |       |      | GRD/PQV/M |
| including | 105.2   | 109.2  |       | 0.35 |     |       | 22  |       |      | 1608  |      | GRD/SQV   |
| including | 106.2   | 107.2  | 1     | 1.21 |     | 14940 | 34  | 1255  | 5803 | 5802  |      | GRD/SQV   |
| and       | 161     | 168    | 7     | 0.01 | - 6 | 1512  | 9   | 26    |      | 53    |      | GRD/M/SQV |
| including | 161     | 162    | 1     | 0.01 | 21  | 5031  | 7   | 42    |      | 137   |      | GRD/QV    |
| and       | 426     | 427    | 1     | 0.49 | 84  |       | 6   | 387   | 526  | 868   | 1.39 | GRD/QV    |
|           |         |        |       |      |     | 21-07 |     |       | _    |       |      | /         |
|           | 53.5    | 54.5   | 1     | 1.46 | 14  | 119   | 63  | 141   |      | 27    |      | GRD/PQV   |
| and       | 89      | 96     | 7     | 0.01 | 1   | 758   | 75  | 10    |      | 53    |      | GRD/PQV/M |
| and       | 131     | 132    | 1     | 0.23 | 23  | 650   | 7   | 298   |      | 120   |      | GRD/PQV   |
| and       | 160     | 163    | 3     | 0.02 | 6   | 1204  | 36  | 61    | 13   | 100   |      | GRD/PQV/M |
| and       | 237     | 238    | 1     | 0.13 | 12  | 1212  | 13  | 74    | 93   | 96    | 0.33 | GRD/PQV   |
|           |         |        |       |      |     | 21-08 |     |       |      |       |      |           |
|           | 50      | 61.3   | 11.3  | 0.04 | 4   | 959   | 39  | 25    |      | 386   |      | GRD/PQV/M |
| including | 52      | 56     | 4     | 0.09 | 10  | 1808  | 21  | 41    | 194  | 980   |      | GRD/PQV/M |
| and       | 220     | 239.2  | 10.2  | 0.01 | 2   | 807   | 72  | 22    | 12   | 50    |      | GRD/PQV   |
| including | 220     | 221    | 1     | 0.01 | 5   | 2891  | 5   | 28    | 7    | 39    | 0.34 | GRD/PQV   |
|           |         |        |       |      |     | 21-09 |     |       |      |       |      |           |
|           | 139.5   | 164    | 24.5  | 0.01 | 2   | 704   | 18  | 18    | _    | 86    |      | GRD/PQV/M |
| including | 154     | 164    | 10    | 0.01 | 4   | 918   | 24  | 28    |      | 137   | 0.15 | GRD/PQV/M |
| including | 154     | 156    | 2     | 0.01 | 4   | 1927  | 40  | 16    | 5    | 38    | 0.25 | GRD/M     |

Note: Granodiorite (GRD), potassic quartz vein (PQV), monzonite (Mon), sulfide quartz vein (SQV); Gold \$1800/oz, silver \$25/oz, copper \$4.10/lb, and zinc \$1.38/lb. Pb 1.12/lb, Mo, 20/lb, Sb, 5/lb; CuEq calculations do not account for relative metallurgical recoveries of the metals

The nine holes mainly targeted for the near surface epithermal vein type mineralization. Drilling intercepted multiple styles of mineralization including epithermal intermediate sulfidation type (IS) Ag-Cu-Au polymetallic quartz veins, fracture filling sulfides veins, sulfide quartz breccia and a multiplicity of disseminated sulfide monzonite porphyry dykes. The drilling program are highlighted by 14.2 m of 0.77% copper equivalent (CuEq) in sulfide quartz breccia zone and 7.4 m of 0.71% CuEq in disseminated sulfide monzonite porphyry dykes. The drill cores and cross sections are shown in Figure 7.12~7.20.

Drill core was logged geotechnically (RQD) and geologically. Geotechnical logging included conversion of blocks to metres and the recording of core recovery. RQD length (>10 cm), fracture count and photographing all core in groups of three boxes once the geologist had completed logging. Blanks, standards and duplicates were inserted into the sample sequence every 30<sup>th</sup> sample. A Husqvarna Core Saw was used to split samples and the split sample was placed in clear poly ore bags with the sample tag and sealed with a zap-strap. Sealed samples were placed in woven poly rice bags and shipped to MS lab in Langley, BC by Bandstra Transportation.

Magnetic susceptibilities of all drill cores were tested by the KT-10 magnetic susceptibility meter, and the susceptibility data were listed in Appendix D. The fresh granodiorite and diorite are magnetic with more than 10 Kappa (10-3 SI). Quartz veins and monzonite have low magnetic susceptibility Kappa (10-3 SI) with less than 1 Kappa (10-3 SI). Altered granodiorite-diorite have intermediate magnetic susceptibility with 1~10 Kappa ((10-3 SI).

The results confirm the presence of Cu-Mo-Ag monzonite porphyry mineralization generated by a larger and deeper porphyry system within Netalzul Mt, setting up deeper drilling tests to define the extent of the porphyry system in the 2022 work season.



Figure 7.12 High-grade polymetallic mineral cemented quartz breccia core from 105.8 m to 109.3 m in hole 6

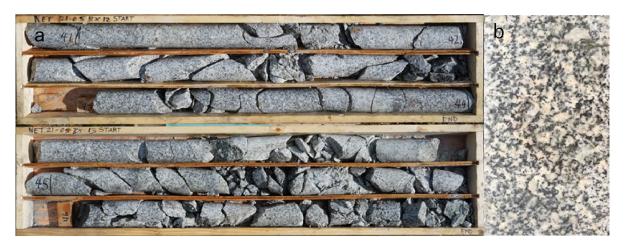



Figure 7.13. a. Core from 40 m to 46 m in NET21-05 showing mineralized monzonite porphyry dykes. b. Core at 43.5 m from NET21-05 showing disseminated chalcopyrite and pyrite in monzonite.



Figure 7.14. Core from 93.5 m to 100 m at NET21-06 showing multiple disseminated sulfide monzonite dykes; one large dyke from 98.0 m to 99.2 m with CuEq grade of 0.21% showing disseminated and vein sulfides and silicification.



Figure 7.15 Core from 157 m to 163 m in hole NET21-09 showing narrow monzonite dykes with Cu grades from 600 ppm to 900 ppm and Mo grades from 40 ppm to 600 ppm within granodiorite hosting rocks.



Figure 7.16. Core at 198 m in hole NET21-08 showing multiple altered K-feldspar and chalcopyrite-pyrite veins.

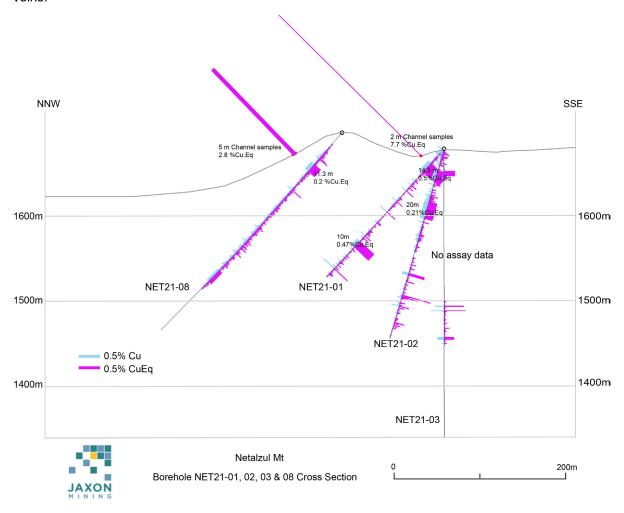



Figure 7.17 Cross section of NET21-01, NET21-02, NET21-03, NET21-08 with copper grade.

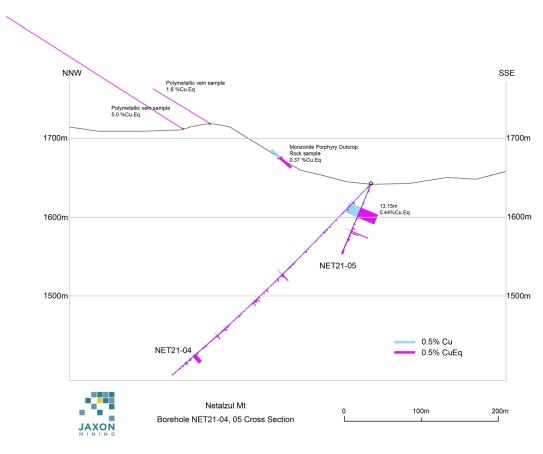



Figure 7.18 Cross section of NET21-04 and NET21-05 with copper grade

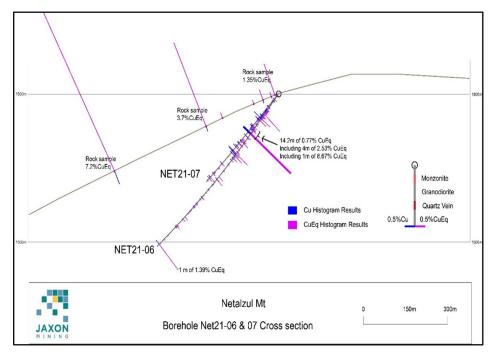



Figure 7.19 Cross section of NET21-06, NET21-07 with copper grade

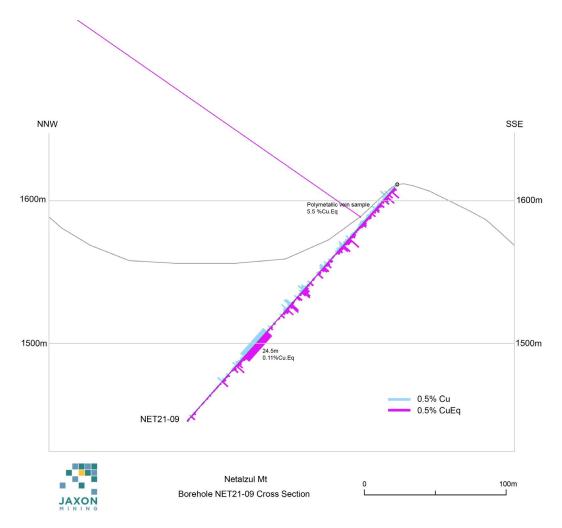



Figure 7.20 Cross section of NET21-09 with copper grade

## 7.4 Structural Mapping and Assessment

Jaxon Mining commissioned CSA Global to carry out a structural mapping program and structural assessment of Netalzul Mt project. Field work focus on the northern part of the project. The report from CSA Global is attached in the Appendix E. The following sequence of deformation are suggested for the Netalzul Mt Project.

D1 transposition fabric and flattening in Bowser Lake Group

Early deformation event (D1, Figure 7.21) affecting the Bowser Lake Group. This event can be identified by a transposition fabric and ptygmatically folded veinlets within Bowser Lake Group metasediments, particularly on the eastern margin of the property



Figure 7.21 Photographs of D1 deformation features within the Bowser Lake Group on the northern side of Netalzul Mountain. A: mm- to cm-scale quartz veins showing intrafolial folds. B: High-strain zone developed in a pelitic unit between two psammitic units. Note the folded and flattened quartz veins. C: Contact between pelitic and psammitic units, which a ~20 cm wide zone of intense strain and quartz veining marked by oxide staining (owing to oxidation of pyrite within quartz veins). D: M-scale folded psammitic unit, fold indicated by red dashed line. View is oblique to fold axis.

• Shear zone at north contact of Netalzul Mountain Intrusion with Bowser Lake Hornfels

Although it has been previously reported that this contact is sheared, deformation at the contact is only observed at the so-called Daisy North Contact Zone (Figure 7.22), where mineralized sulphide-bearing quartz veins are observed in both granitoids and hornfels, and the contact has been sheared, likely by late dextral faults.

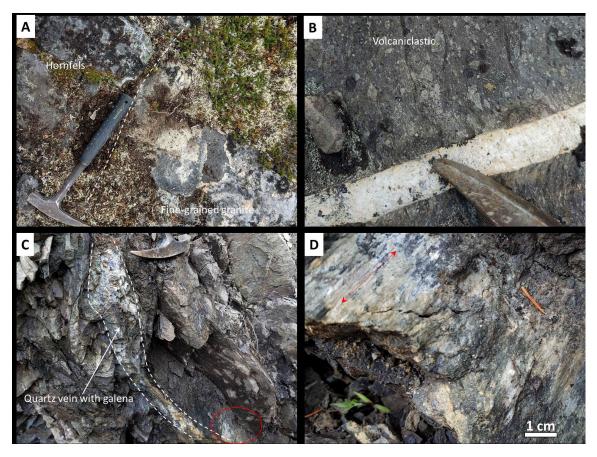



Figure 7.22 Observations of the contact relationships between Netalzul Mountain granitoids and Bowser Lake Group hornfels. A: Sharp, intrusive contact between hornfels and fine-grained granite (locality 626692E, 6130056N). Although partly obscured by lichen, no shear zone is developed at the contact. B: fine-grained granite vein intruding volcaniclastic unit (same locality as A). C: Sheared quartz vein with galena in hornfels, observed adjacent to the sheared contact with granitoids at the "Daisy North Contact Zone". D: Close-up of the red circle in C, showing slickensides developed along the sheared vein contact

### Mineralized quartz veins with associated alteration

Mineralized quartz vein is one of the targets for exploration at Netalzul Mt. Most quartz veins are 1-10 cm in width, and some veins may be up to 2 m thick. Most polymetallic veins appear to dip consistently to the SE, and a second and steeper set of quartz veins is locally noted (Figure 7.23).

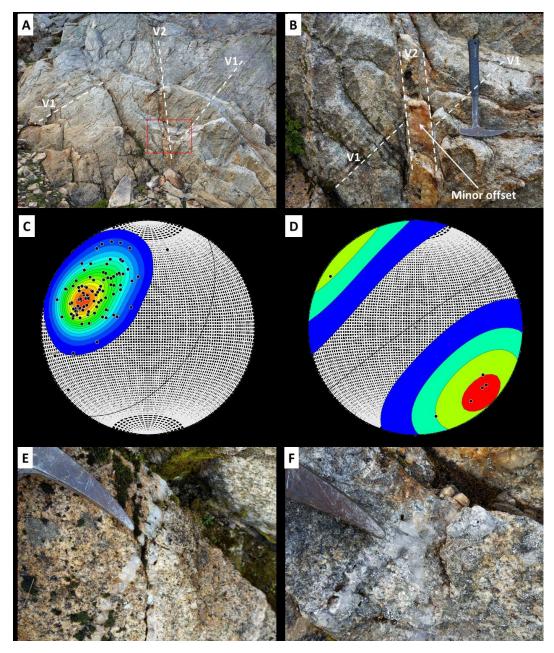



Figure 7.23 Observations of mineralized vein orientations

• Upright, N-S spaced cleavage in granitoids (D2)

One of the more prominent features observed in the project areas is a spaced cleavage developed in granitoid rocks that has a general N-S trend. Although this cleavage appears to be an intensely developed joint set, closer observation of the joints indicates that a weak fabric is developed on or close to the joint planes, and hence this is regarded as a spaced cleavage, related to E-W directed compression, rather than a joint set developed under a tensional regime. This spaced cleavage is younger than the D1 event observed in the

Bowser Lake Group and is termed D2 (Figure 7.24). The D2 spaced cleavage has been exploited by later dolerite dykes.

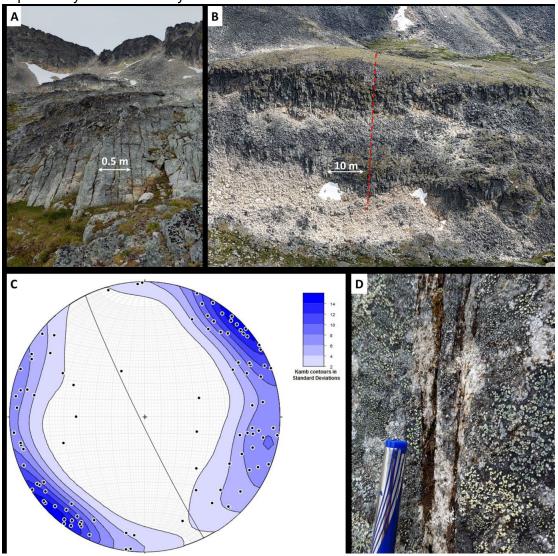



Figure 7.24 NW-SE spaced cleavage in granitoids. A: Spaced cleavage observed in granodiorite (locality 629010E, 6128591N). B: View of intense fracturing of monzonite and granodiorite in the Southeast Zone. C: Equal Area Stereonet of all joint/spaced cleavage measurements taken – average plane is 87 towards 244. D: Close up view showing the increased cleavage intensity closer to a discontinuity plane, indicating that this is a spaced cleavage caused by compressional strain rather than jointing.

Late Dextral Faulting
 An episode of faulting that post-dates the emplacement of dolerite dykes and appears to be the youngest episode of deformation (Figure 7.25).

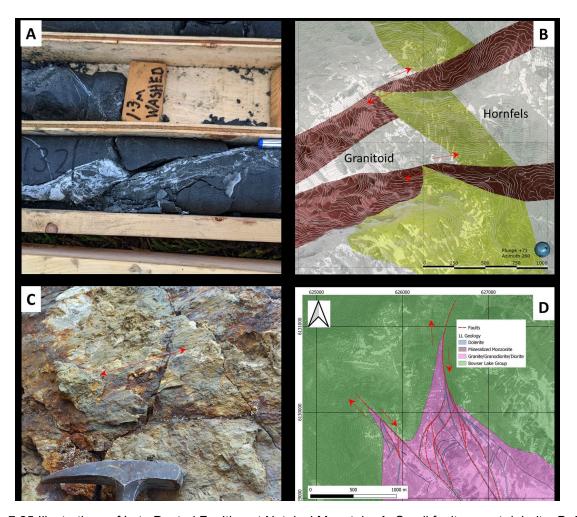



Figure 7.25 Illustrations of Late Dextral Faulting at Netalzul Mountain. A: Small fault current dolerite. B: 3D view of the offset of the northern hornfels-granitoid contact. C: Sub-horizontal slicken side. D: Geological map of the northern part of the project, illustrating faults (offset shown on two major faults)

The South Zone, situated adjacent to the southern contact between the Netalzul Mountain intrusion and the Bowser Lake Group, is relatively unexplored, with no systematic soil sampling and very limited grab sampling. The area is difficult to access, owing to extremely steep terrain, but numerous float/talus samples show chalcopyrite developed along vein surfaces

The geologist from CSA Global spent 9 days on the Netalzul Mt Project, and the actual working time is less than a week because of bad weather. Due to limited working time, this structure assessment report is only used for a reference. Jaxon will hire a structure geologist to conduct a thorough field structural analysis on Netalzul Mt, including identifying controls on ore distribution through a combination of targeted field mapping and core analysis.

#### 7.5 IP/MT Survey

SJ Geophysics conducted 3D induced polarization survey IP/MT over the Netalzul Mt porphyry target area during August 28~Sep 14, 2021. SJ Geophysics utilized their Volterra distributed

acquisition system to measure the DC resistivity, induced polarization, and MT resistivity responses. The Volterra 3DIP data were acquired on 200 m spaced lines, utilizing 5-line acquisition sets and 112 m dipoles with a customized diamond array. Current injections were acquired every 100 m. It provided a depth of investigation of approximately 700 m-800 m.

To increase the resistivity data depth of investigation, an optional MT survey in addition to the IP survey has been included to complement the resistivity data depth of investigation to approximately 1000 m+. Data for the Volterra short interval MT survey were collected whenever the IP transmitter is not actively transmitting.

The IP survey results define a large annular IP chargeability anomaly interpreted as propylitic alteration (Figure 7.26). The MT survey results show a deep central conductive MT anomaly further lighting up the deeper porphyry target (Figure 7.27).

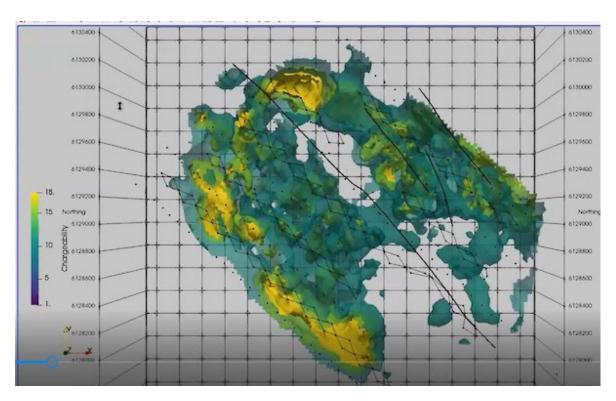



Figure 7.26 Annular IP chargeability anomaly at Netalzul Mt

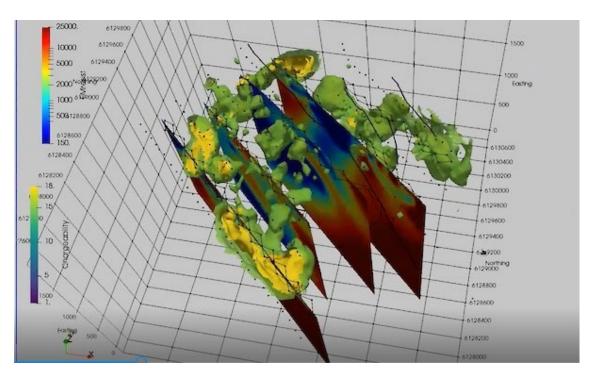



Figure 7.27 Magnetotelluric and IP survey showing a deep strong and large conductive anomaly (the porphyry system target) ~1,000 m at depth, at central north area surrounded by annular IP chargeability nearer to surface.

### 7.6 Petrographic study

Eleven thin sections were made in 2021, including five drill core samples and six outcrop samples. The petrographic study was conducted by John G. Payne, Ph.D., P.Geo. of Surrey, British Columbia, Canada. The detailed info of rocks for the petrographic study was listed on Table 7.5, and the detailed petrographic study was described in Appendix F and shown in Figure 7.28~7.30. The purpose of the petrographic study is for systematic classification and precise description of rocks.

Table 7.5 Thin section and petrographic study summary

|                  | Easting | Northing | Elevation | Rock type          |
|------------------|---------|----------|-----------|--------------------|
| A0027304         | 626289  | 6129849  | 1674      | Silicified granite |
| A0027308         | 626594  | 6130012  | 1420      | Hornfelsed latite  |
| A0027311         | 626594  | 6130015  | 1420      | Hornfelsed latite  |
| A0027315         | 626683  | 6130061  | 1565      | Granodiorite       |
| A0027051         | 627453  | 6130558  | 1440      | Argillite          |
|                  |         |          |           | Fine grained       |
| A0027052         | 627620  | 6130560  | 1515      | greywacke          |
| NET21-02 @ 49.3m |         |          |           | Dolerite           |
| NET21-02 @196.9m |         |          |           | Granodiorite       |
| NET21-04 @154.5m |         |          |           | Granodiorite       |
| NET21-04 @284m   |         |          |           | Andesite           |
| NET21-04 @292m   |         |          |           | Monzonite          |

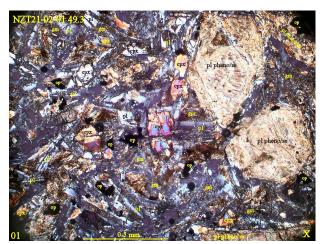





Figure 7.28 Thin section photos of dolerite sample NET21-02@49.3m. Subhedral-anhedral plagioclase phenocrysts were altered completely to sericite; groundmass includes lathy plagioclase grains and equant fresh clinopyroxene grains in a matrix of aphanitic plagioclase-clinopyroxene with accessory disseminated equant opaque (in part at least magnetite).

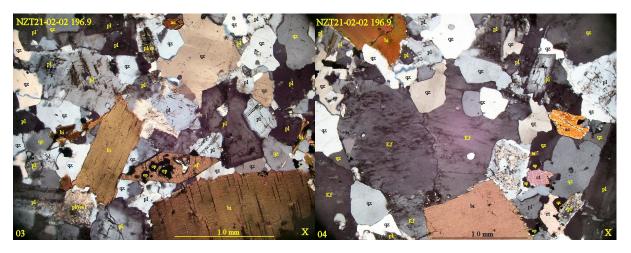



Figure 7.29 Thin section photos of granodiorite sample NET21-02@196.9m. Left: intergrowth of anhedral plagioclase (some slightly compositionally zoned, some altered slightly to moderately to sericite), quartz, and biotite, with a euhedral grain of sphene (with opaque inclusions), and a small grain of actinolite. Right: intergrowth of anhedral K-feldspar, quartz, plagioclase (fresh to altered moderately to sericite), and biotite, with minor actinolite and a patch of calcite-(apatite-opaque).



Figure 7.30 Thin section photos of monzonite sample NET21-04@292m subhedral plagioclase (altered slightly to sericite) and commonly rimmed by K-feldspar; accessory disseminated prismatic to acicular hornblende; disseminated magnetite and quartz; interstitial patches of calcite.

### 7.7 3D footprint modelling

Fathom Geophysics completed the first 3D porphyry footprint modeling exercise over the Netalzul Mountain areas in May 2021, and Fathom updated the model using more rock samples in Feb 2022. The goal of this work is to generate 3D targets indicating possible porphyry copper mineralization in the Netalzul, British Columbia project area by applying Fathom Geophysics' 3D porphyry footprint modeling method to rock samples.

Fathom's porphyry footprint modeling method works by taking an idealized model of a porphyry copper system and moving it through 3D space. The core of the targeted porphyry system is placed at every voxel in a 3D model until it fits the most logical location per the reference models. The idealized or reference model used for this work was derived from Halley et al, 2015. The geochemical model Halley uses is largely derived from Yerington and includes zonation information from other significant porphyry deposits. Jaxon is using the same modeling team and approach as was used by SolGold at the Alpala epithermal porphyry discovery in Ecuador.

Four rock targets and two soil targets were generated, as shown in Figure 7.31~7.33. Table 7.6 summarized the targets derived from the results.

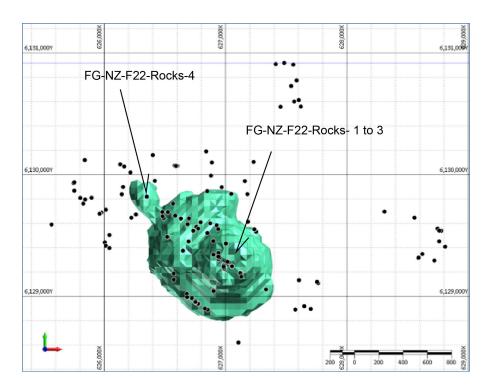



Figure 7.31 Four rock targets using the Halley model.

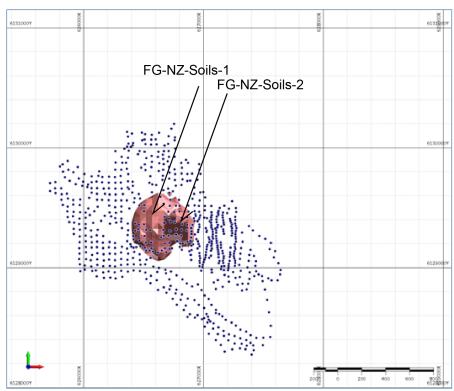



Figure 7.32 Two soil targets using the Halley model geometry

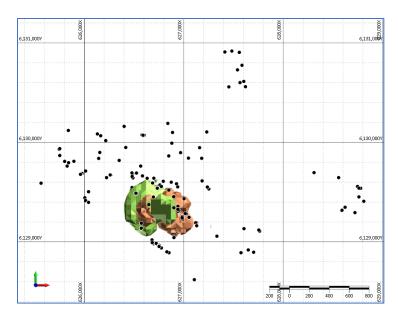



Figure 7.33 Rock targets (Orange) overlap with Soil target (Green). The results indicate a similar X-Y location for the highest scoring part of the target.

Table 7.6 Table showing the targets highlighted by the footprint modeling processing applied to the Netalzul rock and soil data

| Target  | X      | Υ       | RL   | DEM  | Depth | Comments                                                  |
|---------|--------|---------|------|------|-------|-----------------------------------------------------------|
| FG-NZ-  | 626630 | 6129400 | 640  | 1720 | 1080  | High ranking target that is reasonably well constrained   |
| Soils-1 |        |         |      |      |       | but is centered under a gap in the soils.                 |
| FG-NZ-  | 626870 | 6129310 | 1530 | 1630 | 100   | Located above FG-NZ-Soils-1. The target is larger and     |
| Soils-2 |        |         |      |      |       | located more to the west in the unconstrained results.    |
| FG-NZ-  | 626820 | 6129290 | 850  | 1650 | 800   | The most likely location for a porphyry in the main       |
| F22-    |        |         |      |      |       | target area. Close to target FG-NZ-Soils-1.               |
| Rocks-1 |        |         |      |      |       |                                                           |
| FG-NZ-  | 626960 | 6129270 | 620  | 1650 | 1030  | The second most likely location for a porphyry in the     |
| F22-    |        |         |      |      |       | main target area located down and southeast of target     |
| Rocks-2 |        |         |      |      |       | FG-NZ-F22-Rocks-1. Close to target FG-NZ-Soils-1.         |
| FG-NZ-  | 626980 | 6129220 | 1320 | 1660 | 340   | The third most likely location for a porphyry in the main |
| F22-    |        |         |      |      |       | target area. The target is relatively shallow making it   |
| Rocks-3 |        |         |      |      |       | worth testing. Close to target FG-NZ-Soils-2.             |
| FG-NZ-  | 626340 | 6129820 | 950  | 1520 | 570   | A separate target located northeast of the main target.   |
| F22-    |        |         |      |      |       | It is relatively deep and lower scoring, so should be     |
| Rocks-4 |        |         |      |      |       | considered a lower priority target. Close to target FG-   |
|         |        |         |      |      |       | NZ-Rocks-1                                                |

## 7.8 Water sampling

Two creeks are running thought the Netalzul Mt project. For the environment monitoring purpose, two upstream water samples and two downstream samples were collected before the drilling program, while another two upstream water samples and two downstream samples were collected after the drilling program (Table 7.7). Figure 7.34 shows the location of the water samples. Total metals and dissolved metals were analyzed.

The assay results were listed in the Appendix G. The data showed us consistent levels of most of the main elements including Cu, Mo, Ag. The drilling program did not have effect on environmental issue.

Table 7.7 Detailed info about the water samples

|              | Before drilling program | After drilling program |
|--------------|-------------------------|------------------------|
| Upstream 1   | Water 1                 | Water 8                |
| Downstream 1 | Water 2                 | Water 7                |
| Upstream 2   | Water 3                 | Water 5                |
| Downstream 2 | Water 4                 | Water 6                |

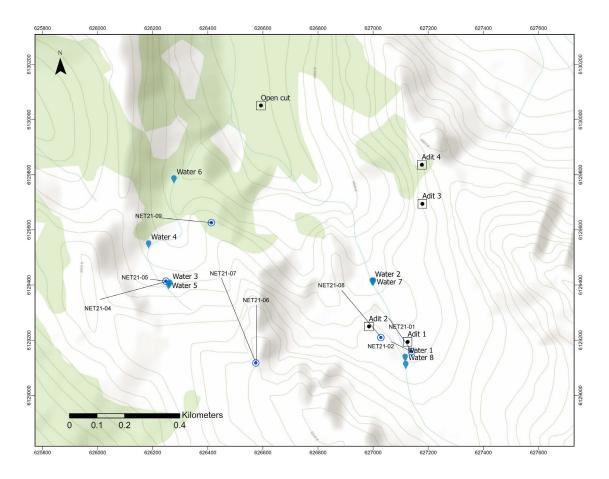



Figure 7.34 Water sample, creeks, and drillholes location

## 7.9 Lidar survey

Jaxon Mining commissioned Eagle Mapping Ltd. to undertake a Lidar survey on the Netalzul Mt Project (Figure 7.35). Eagle Mapping captured high resolution >8 pulses/m2 LiDAR @ > 50% overlap. The LiDAR data capture was accomplished using their RIEGL LMS-VQ-1560 which was mounted in a Cessna 206. The LiDAR survey was conducted from August 31 to September 1. A Cessna 206 using a Riegl Q1560 LiDAR system was flown over the Netalzul Mt project area. The

data was processed at Eagle Mapping's office in Port Coquitlam, BC. The following information are highlights for the Lidar survey program.

- Data collection took place between 9,500 and 11,000 feet above sea level
- 428 photos were collected over 145 line kilometers @ < 20cm GSD</li>
- Phase One IXM-rs150F camera was used
- 25 total strips or lines
- LiDAR > 8 pulses per metre

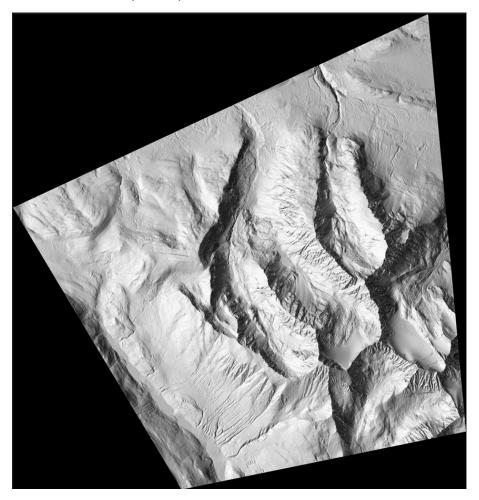



Figure 7.35 Lidar map at Netalzul Mt

## 8 Sampling preparation, analysis, and security

The rock and soil samples were collected in the field by experienced geologists. All rock/soil samples have field notes that included rock/soil number, hand GPS location, and a general rock description. Each rock/soil was placed in a marked poly/paper bag, and numbered rock/soil sample tag was also placed inside each bag, which was securely closed with zap straps. Groups of rock/soil samples were placed into marked rice bags, which were double sealed with zap straps.

Security tags were added to rice bags to further increase QAQC protocol. All rock & soil samples were then transported via helicopter to Smithers, and then transported via car to Vancouver.

All rock samples were sent to MS Analytical Laboratories in Langley, BC for analysis. The representative samples were saved for Jaxon's rock library, descriptive purposed and petrographic study. It was decided by management that infield QA/QC programs were not warranted for the rock sampling program of this preliminary and case history size of green fields programs.

Jaxon relied upon the QA/QC programs that are in place at MS Analytical Laboratory. Jaxon reviewed of the labs' inserted blank, duplicate and control reference material data results occurred upon receipt of the analytical reports from the lab, and no problems were noted with this QA-QC protocol.

All soil samples were tested using Olympus Vanta handheld X-ray fluorescence (XRF) analyzers, which provide high performance, real-time geochemical data for rapid multi-element characterization of soil. The soil samples were dried,18 mesh screened, and put into small containers. Thin films were used to cover the containers, which were placed under the handheld Olympus XRF for elements analysis.

Core samples were cut and collected in the core shack facility in the camp site & Smithers, B.C.. Numbered core sample tags were placed inside each bag, and the samples were placed in woven poly rice bags and shipped to MS lab in Langley, BC by Bandstra Transportation.

#### 9 Conclusions

The results from the drilling are on target to confirm the existence of, and allow us to better vector in on the deeper and mineralized porphyry system, which is our ultimate target at Netalzul Mt. The grades in the monzonite dykes probably means the system does not leak (the main mass will likely have those grades or better) and the faults have tapped the system.

The results to date position Netalzul Mt to become an extensible Huckleberry analogue. We will be reprocessing our magnetic data and adding other new and repossessed geophysical, geochemical data to our model. The 2022 work season will provide more results about the scope and scale of the porphyry at Netalzul Mt. Netalzul Mt is our priority, however, the Company will continue exploration work on the six other targets we are systematically advancing on the Hazelton Property."

Recommendation for ongoing work on the Netalzul Mt project include:

- 1. Determining the structural orientation of units and mineralization
- The LiDAR results will be utilized to reset and reprocess the life of project, geophysical, geochemical and structural data. The updated models will then be used to more precisely vector in on the deeper porphyry system target within Netalzul Mt. The new modeling will depict the orientation and more precise depth of the porphyry system, using 3D projections.

- 3. Drilling- follow up on good results from 2021 program to include deep hole to test the deep porphyry mineralization
- 4. Investigate new areas as discovered
- 5. Soil and rock sampling program covering the southeast part of the granodiorite intrusion.

#### 10 References

Andrew W.Godnay (2014): Prospecting and Geochemistry, Blunt Mountain Property, Omineca Mining Division, British Columbia. Unpublished report for Remington Resources Inc, Assessment Report 35022

Carter, N.C. (1976): Regional setting of porphyry deposits in west-central British Columbia. In Porphyry deposits of the Canadian Cordillera. Edited by B.A. Sutherland. Canadian Institute of Mining and Metallurgy, Special Volume 15: 227–238.

Delbert E. Myers (1983): Geology and rock geochemistry report, Date 1-4 Claims, Omineca Mining Division, BC. Unpublished report for Noranda Exploration Company, Limited, Assessment Report 11560

Delbert E. Myers (1983): Geology and geochemistry, Mo Property, Omineca Mining District, Hazelton Map Area 93M, BC. Unpublished report for Noranda Exploration Company, Limited, Assessment Report 13184

Delbert E. Myers (1984): Geochemistry of the Blunt Mountain property, SKI mineral claim, Omineca Mining Division. Unpublished report for Noranda Exploration Company, Limited, Assessment Report 13832

Delbert E.Myers (1987): Diamond Drilling on the Blunt Mountain Property, Beta 3 Mineral Claim, Omineca Mining Division, British Columbia. Unpublished report for Noranda Exploration Company, Limited, Assessment Report 16273

Delbert E.Myers (1988): Diamond Drilling, Blunt Mountain Property, Omineca Mining Division, British Columbia. Unpublished report for Noranda Exploration Company, Limited, Assessment Report 17135

Friedman, R.M., Anderson, R.G., and Billesberger, S.M., (2000): Late Cretaceous ages for the Chelaslie River and Tetachuch-north plutons, northern Tetachuck

Robert E.REID (1985): Geochemical report, Skilokis property, Omineca Mining Division, British Columbia. Unpublished report for Atna Resources Ltd and Noranda Exploration Ltd, Assessment Report 15246

Mark Nelson (2006): Prospecting report on the Blunt Mountain Project, Omineca Mining District, Unpublished report for Remington Resources Inc., Assessment Report 28890

MacIntyre, D.G., Ash, C. and Britton, J., 1994. Nass-Skeena (93/E, L, M; 94/D; 103/G, H, I, J, P; 104/A, B). British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey Open File 1994-14.

MacIntyre, D,G., Webster, I.C.L., and Villeneuve, M.E. (1997): Babine Porphyry Belt Project: Bedrock Geology of the Old Fort Mountain Area (93M/1), British Columbia. In, Geological Fieldwork 1996, BC Ministry of Energy and Mines, Paper 1997-1, pages 47-68.

MacIntyre, D.G. (2000): The Mid-Cretaceous Rocky Ridge Formation – A New Target for Subaqueous Hot-Spring Deposits (Eskay Creek-Type) in Central British Columbia. British Columbia Geological Survey, Geological Fieldwork 2000, Paper 2001-1

MacIntyre, D.G. (2006): Geology and mineral deposits of the Skeena arch, westcentral British Columbia (Parts of NTS 093E, L, M; 094D; 1031, P): Update on a geoscience BC digital data compilation project. Geological fieldwork 2006, Paper 2007-1, pp. 333–340.

MacIntyre, D.G. and Villeneuve, M.E. (2007): Geochronology of the Rocky Ridge volcanics, Skeena Group, British Columbia; BC Ministry of Energy Mines and Petroleum Resources, Geofile 2007-4.

McMillan, W.J., Thompson, J.F.H., Hart, C.J.R., and Johnston, S.T. (1995): Regional geological and tectonic setting of porphyry deposits in British Columbia and Yukon Territory. In Porphyry Deposits of the Northwestern Cordillera of North America. Edited by T.G. Schroeter. Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 46: 40–57.

Nelson, J., and Colpron, M. (2007): Tectonics and metallogeny of the British Columbia, Yukon and Alaskan Cordillera, 1.8 Ga to the present. In Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Edited by W.D. Goodfellow. Geological Association of Canada, Mineral Deposits Division, Special Publication, 5: 755–791.

Nokleberg, W.J., Bundtzen, T., Eremin, R.A., Ratkin, V.V., Dawson, K.M., Shpikerman, V.V., et al. (2005): Metallogenesis and tectonics of the Russian Far East, Alaska and the Canadian Cordillera. U.S. Geological Survey Professional Paper 1697, 397 pp.

Peter R. Delancey (1990): Geochemical (Rock) report on the Blunt Mountain Mineral Property, Omineca Mining Division, NTS 93 M/03, 06. Unpublished report for Atna Resources Ltd and Noranda Exploration Ltd, Assessment Report 20566

Peter R. Delancey (1991): Geochemical (Rock) report on the Blunt Mountain Mineral Property, Omineca Mining Division, NTS 93 M/03, 06. Unpublished report for Atna Resources Ltd, Assessment Report 21748

Peter R. Delancey (1994): Geological and Geochemical (Rock) report on the Blunt Mountain Mineral Property, Omineca Mining Division, NTS 93 M/03, 06. Unpublished report for Atna Resources Ltd, Assessment Report 23783

P. McCarter (1981): Geological and geochemical surveys on the Date mineral claim group, Omineca Mining Division, British Columbia. Unpublished report for Noranda Exploration Company, Limited, Assessment Report 09684

Richards, T.A. (1980): Geology of the Hazelton Map Sheet 93M; Geological Survey of Canada, Open File Map 720.

Richards, T.A. (1990): Geology of Hazelton Map Area (93M); Geological Survey of Canada, Open File Map 2322.

R. Kemp (1996): Soil geochemical report on the Blunt Mountain Property Omineca Mining Division, NTS 93 M/03, 06. Unpublished report for Atna Resources Ltd, Assessment Report 24739

#### 11 Certificate

This Assessment Report was prepared by the following Qualified Persons. The effective date of this report is June 30th, 2022.

Lijuan (Lily) Liu, P.Geo.,

- I, Lijuan (Lily) Liu, P.Geo. do hereby certify that:
- 1. I am a consulting geologist residing in the Province of British Columbia, Canada. Mailing address: Unit 1805, 5288 Melbourne St, Vancouver, BC, Canada V5R 6E6
- 2. I hold a B.A.Sc. in Geology conferred by Chang'an University from Xi'an, China in 2007 and a M.Sc. in Geochemistry conferred by Chinese Academy of Science from Beijing, China in 2010, and a M.Sc. in Economic Geology conferred by University of Alberta from AB, Canada in 2015.
- 3. I am a member (License # 50709), in good standing, of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 4. I have been practicing my profession related to mining and mineral exploration for over 8 years in a wide variety of locations in North, South America, and China. Specific to the content of this report are fieldworks involving the reports in 2021.
- 5, The information for this report has been taken from government, old geological reports and work undertaken as directed Jaxon Mining Inc. I was engaged to write an assessment report for the summer exploration program 2021.
- 6. The assessment costs presented in this report are true and accurate to the best of my knowledge.

Dated this

Linds

Signature of Qualified Person

Lijuan (Lily) Liu, P.Geo.

Yingting (Tony) Guo, P.Geo.,

I, Yingting (Tony) Guo, P.Geo. do hereby certify that:

- 1. I am a consulting geologist and Canadian citizen residing in the Province of British Columbia, Canada. Mailing address: 2707 164A Street, Surrey, B.C., Canada V3Z 0P3.
- 2. I hold a B.A.Sc. in Geology Science conferred by the Nanjing University from Nanjing, China in 1982 and a Ph.D. in Geology and Exploration conferred by the China University of Mining and Technology from Beijing, China in 1988.
- 3. I am a member (License # 31257), in good standing, of the Association of Professional Engineers and Geoscientists of the Province of British Columbia, Canada and a Qualified Professional (QP) member (# 01472QP) of the Mining and Metallurgical Society of America with the special expertise in geology and ore reserve.
- 4. I have been practicing my profession related to mining and mineral exploration for over 30 years in a wide variety of locations in North, South America, Africa and China. Specific to the content of this report are fieldworks involving the reports in 2021.
- 5, The information for this report has been taken from government, old geological reports and work undertaken as directed Jaxon Mining Inc. I was engaged to write an assessment report for the summer exploration program 2021.
- 6. The assessment costs presented in this report are true and accurate to the best of my knowledge.

Dated this

tongano

Signature of Qualified Person

Yingting (Tony) Guo, P.Geo.

# 12 Appendices

- 12.1 Appendix A Statement of Costs
- 12.2 Appendix B Rock Sample Assay
- 12.3 Appendix C Soil Sample Assay
- 12.4 Appendix D Drill Core Assay and Magnetic Susceptibilities
- 12.5 Appendix E Structure Assessment Report
- 12.6 Appendix F Petrographic Study
- 12.7 Appendix G Water Samples Assay Data